ANEJO POPULATION AND POPULATION AND

ESTRUCURAS Y TÚNELES

ÍNDICE

1.	Est	ructu	ras	1
	1.1.	Introd	lucción	
	1.2.	Norma	ativa y documentación de aplicación	1
			Normativa estructural vigente	
			Otra documentación estructural	
			Otra normativa de carácter no estructural	
	1.3.		ión de la tipología de las estructuras	
		1.3.1.	Viaductos	2
			Pérgolas	
		1.3.3.	Pasos superiores	6
		1.3.4.	Pasos inferiores	
	1.4.	Relac	sión de estructuras. viaductos	9
		1.4.1.	Nudo de Majarabique	
		1.4.2.	Alternativa 1.1	10
		1.4.3.	Alternativa 1.2	13
		1.4.4.	Alternativa 2.1	15
		1.4.5.	Alternativa 2.2	17
		1.4.6.	Alternativa 3.1	20
		1.4.7.	Alternativa 3.2	22
	1.5.	Falso	s túneles	24
		1.5.1.	Solución estructural	24
		1.5.2.	Relación de falsos túneles	25
	1.6.	Cuadi	ros resumen estructuras	26
		1.6.1.	Nudo de Majarabique	26
		1.6.2.	Alternativa 1.1	27
		1.6.3.	Alternativa 1.2	28
		1.6.4.	Alternativa 2.1	29
		1.6.5.	Alternativa 2.2	3′
		1.6.6.	Alternativa 3.1	33
		1.6.7.	Alternativa 3.2	35

2.	Tún	eles3	7
	2.1.	Introducción y objeto	37
		Descripción de la actuación	
		2.2.1. Estructura de la traza	
		2.2.2. Recorrido geológico-geotécnico	38
	2.3.	Sección tipo	
		2.3.1. Túnel principal	39
	2.4.	Procedimiento constructivo	39
		2.4.1. Selección del método constructivo	39
	2.5.	Secciones tipo de sostenimiento	40
		2.5.1. Predimensionamiento según el índice Q de Barton	41
		2.5.2. Predimensionamiento según el índice RMR de Bieniawski	42
		2.5.3. Sostenimientos propuestos.	44
	2.6.	Tratamientos especiales	44
		2.6.1. Tratamientos de estabilidad de la bóveda y de frente excavación	
		2.6.2. Tratamientos de impermeabilización	45
	2.7.	Impermeabilización y drenaje	46
	2.8.	Revestimiento	47
	2.9.	Salidas de emergencia	47
		. Auscultación	
		2.10.1. Magnitudes a controlar e instrumentos	51
		2.10.2. Secciones de instrumentación	51
		2.10.3. Definición de umbrales y frecuencias	52
		2.10.4. Medidas de actuación	
		2.10.5. Tratamiento de la información y elaboración de informes	.37
	2.11	. Seguridad en túneles	37
	2.12	. Valoración económica	41

1. Estructuras

1.1. Introducción

El objeto del presente documento será analizar las posibles soluciones estructurales en el tramo Sevilla - Huelva con un diseño adecuado a una línea de alta velocidad.

Para ello, el presente anejo pretende analizar, a partir de distintas alternativas, las diferentes estructuras que configuran el trazado entre la ciudad de Sevilla y la ciudad de Huelva.

El estudio comienza en el Nudo de Majarabique, que es común a todas las alternativas planteadas. En este nudo se desarrollan un total de ocho estructuras presentando cruces diversos con otras infraestructuras, tanto de ferrocarril como de carretera.

A partir de este punto se analizan tres posibles alternativas, subdivididas cada una de ellas en dos soluciones. Por tanto, se llegan a estudiar seis posibles soluciones de trazado diferentes.

1.2. Normativa y documentación de aplicación

Se incluye a continuación la normativa y otra documentación de carácter no normativo empleada en el diseño de las estructuras del proyecto.

1.2.1. Normativa estructural vigente

Las estructuras diseñadas deberán adecuarse a la normativa estructural de acciones actualmente vigente. A continuación, se incluye una descripción de las dos normativas principales, así como de su ámbito de aplicación en el caso de las estructuras objeto del diseño en este apartado del Proyecto.

1.2.1.1. Instrucción de acciones en puentes de ferrocarril (iapf-07)

La IAPF-07 es de aplicación al proyecto de puentes de nueva construcción integrados en la red ferroviaria de interés general de anchos ibérico, UIC o métrico, independientemente de su tipología, material constructivo o velocidad de proyecto, así como a otras estructuras que soporten vías férreas tales como alcantarillas, tajeas, muros.

Por lo tanto, de lo anterior se colige que esta normativa será de aplicación en las siguientes estructuras:

- Viaductos y pérgolas.
- Pasos inferiores.
- Obras de drenaje y muros.

1.2.1.2. Instrucción de acciones en puentes de carretera (iap-11)

La instrucción IAP-11 es de aplicación al proyecto de puentes de carretera, es decir, a estructuras que para salvar una discontinuidad en un trazado permiten el paso del tráfico rodado formado por vehículos convencionales del parque automovilístico que circulan por la red de carreteras. También es de aplicación a pasarelas, rampas de acceso y muros.

Por lo tanto, de lo anterior se colige que esta normativa será de aplicación en las siguientes estructuras:

- Pasos superiores de carreteras.
- Pasos superiores de caminos.

1.2.2. Otra documentación estructural

Se incluye a continuación otra documentación a considerar en las estructuras objeto del presente Proyecto:

- NAP 2015 "Normas Adif Plataforma"
- IGP 2011 v-2 de ADIF en las que se incluyen criterios geométricos de diseño en lo relativo a pasos superiores y pasos inferiores en la redacción de proyectos de plataforma de ADIF.
- Eurocódigos.
- Obras de Paso de Nueva Construcción-Conceptos Generales: Publicada por la DGC, Ministerio de Fomento en 2000. Aunque está redactada basada en normativas de acciones ya derogadas, sigue manteniendo criterios de diseño que se estima que son válidos a este nivel del Proyecto.
- Prescripciones técnicas para el diseño de pasos de fauna y vallados perimetrales publicado por el Ministerio de Medio Ambiente. Se incluyen en este documento criterios para el diseño de pasos de fauna.
- Recomendaciones para la realización de Pruebas de Cargas de Recepción en Puentes de Carretera.
- Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado, publicado por la DGC, Mº de Fomento en 2012.

1.2.3. Otra normativa de carácter no estructural

Se trata de otra normativa de carácter no estructural, pero que tiene influencia en el diseño de las estructuras, especialmente en lo que se refiere al comportamiento de las mismas a lo largo de su vida útil.

 Norma 5.2 IC de drenaje superficial de la Instrucción de Carreteras, que incluye criterios de drenaje e impermeabilización de estructuras, publicada en el BOE en 2016.

1.3. Elección de la tipología de las estructuras

Existen diversas tipologías estructurales a emplear para cada uno de los grupos, la elección de una u otra será función de:

- Geometría (luz a salvar).
- Afecciones.
- Requerimientos ambientales (protecciones, Red Natura, etc).
- Requerimientos hidráulicos.
- Plazo de ejecución.
- Geotecnia (cimentación).

Además de estos criterios más objetivos existen otros subjetivos que también habrá que tener en cuenta para el encaje.

A continuación, se analizan cada uno de los grupos estructurales independientemente debido a sus particularidades que llevan asociadas.

1.3.1. Viaductos

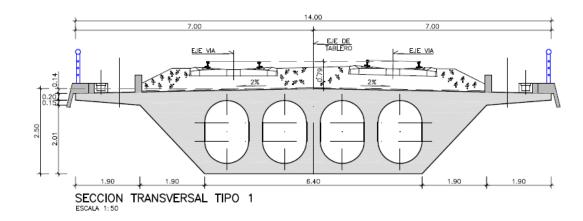
Como norma general se consideran tipologías estructurales habituales en hormigón estructural ejecutables in situ: losas pretensadas aligeradas, cajones pretensados o vigas prefabricadas tipo artesa o doble T.

Respecto al diseño de los vanos de los Viaductos, se han estimado en el prediseño tableros con luces función del elemento a salvar y el ángulo de cruce. Siempre que ha sido posible se emplearán soluciones hiperestáticas y con luces no muy reducidas por su mejor comportamiento dinámico frente al paso de los trenes.

Como resultado nos encontramos con las siguientes secciones tipo en las estructuras tipo viaducto

1.3.1.1. Sección tipo 1. - luz máxima 35 metros. doble vía.

Para este caso se ha considerado una sección tipo que está constituida por un tablero en losa de hormigón postesado formada por un núcleo central y voladizos laterales hasta completar el ancho total del tablero.


El núcleo central va aligerado mediante aligeramientos cilíndricos longitudinales de sección transversal circular alargada. Las principales características de esta sección tipo son:

■ Luz del vano: 30 – 35 metros

Canto de losa: 2,50metros (luz/canto=14,0)

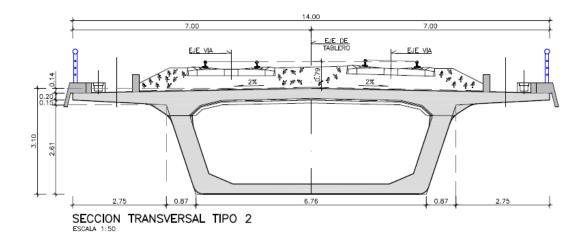
Longitud de voladizos extremos 1,90 metros

Aligeramientos de 1,30 m de diámetro y 1.85 m de altura

1.3.1.2. Sección tipo 2. - luz máxima 45 metros. doble vía

Para este caso se utilizan tableros de hormigón postesado con sección transversal en cajón de sección constante y voladizos laterales, construida bien "in situ", mediante cimbra, o bien mediante la técnica de tablero empujado.

Las principales características de esta sección tipo son:


■ Luz del vano: 40.0 – 45.0 metros

Canto de viga: 3.10 m (luz/canto =13,0)

Espesor de almas: 45 cm

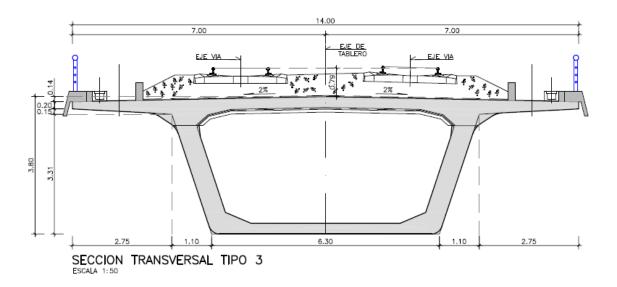
Espesor en cara inferior: 30 cm

Longitud de voladizos extremos: 2.75

1.3.1.3. Sección tipo 3. - luz máxima 55 metros. doble vía

Para este caso se utilizan tableros de hormigón postesado con sección transversal en cajón de sección constante y voladizos laterales, construida bien "in situ", mediante cimbra, o bien mediante la técnica de tablero empujado.

Las principales características de esta sección tipo son:


■ Luz del vano: 50.0 – 55.0 metros

Canto de viga: 3.80 m (luz/canto =14,5)

Espesor de almas: 45 cm

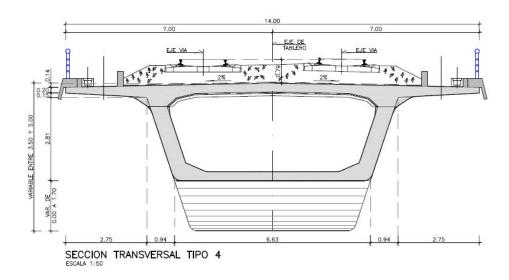
Espesor en cara inferior: 30 cm

Longitud de voladizos extremos: 2.75 m

1.3.1.4. Sección tipo 4. sección tipo de viaducto - luz máxima 65 metros

Para este caso se utilizan tableros de hormigón postesado con sección transversal en cajón de canto variable, construida bien "in situ", mediante cimbra, o bien mediante la técnica de tablero empujado.

Las principales características de esta sección tipo son:


■ Luz del vano: 60.0 – 65.0 metros

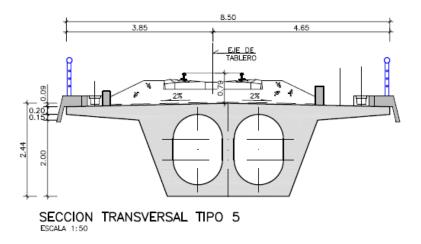
Canto de viga variable de 3.50 a: 5.00 m

Espesor de almas: 50 cm

Espesor en cara inferior: 35 cm

Longitud de voladizos extremos: 2.75 m

1.3.1.5. Sección tipo 5. - luz máxima 35 metros. vía única.


Para este caso se ha considerado una sección tipo que está constituida por un tablero en losa de hormigón postesado formada por un núcleo central y voladizos laterales hasta completar el ancho total del tablero.

El núcleo central va aligerado mediante aligeramientos cilíndricos longitudinales de sección transversal circular alargada. Las principales características de esta sección tipo son:

■ Luz del vano: 30 – 35 metros

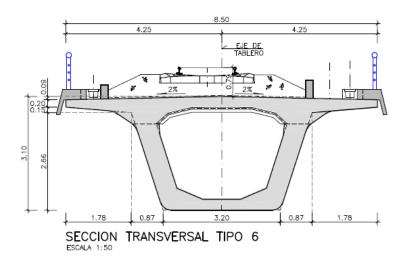
Canto de losa: 2,44 metros (luz/canto=14,4)

- Longitud de voladizos extremos 1,90 metros
- Aligeramientos de 1,30 m de diámetro y 1.85 m de altura

1.3.1.6. Sección tipo 6. - luz máxima 45 metros. vía única.

Para este caso se utilizan tableros de hormigón postesado con sección transversal en cajón de sección constante y voladizos laterales, construida bien "in situ", mediante cimbra, o bien mediante la técnica de tablero empujado.

Las principales características de esta sección tipo son:

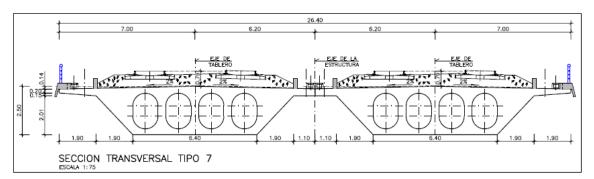

■ Luz del vano: 40.0 – 45.0 metros

Canto de viga: 3.10 m (luz/canto =13,0)

Espesor de almas: 45 cm

Espesor en cara inferior: 30 cm

Longitud de voladizos extremos: 1.78

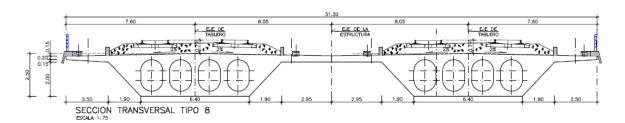


1.3.1.7. Sección tipo 7. - luz máxima 35 metros. ancho 26.40 m.

Esta sección se corresponde a viaductos situados en una zona de adelantamiento y estacionamiento de trenes, PAET. Esto implica un ensanchamiento de la plataforma ferroviaria. Para este caso se ha considerado una sección tipo que está constituida por dos tableros adyacentes en losa de hormigón postesado, formado cada uno de ellos por un núcleo central y voladizos laterales hasta completar el ancho total del tablero.

El núcleo central va aligerado mediante aligeramientos cilíndricos longitudinales de sección transversal circular alargada. Las principales características de esta sección tipo son:

- Luz del vano: 30 35 metros
- Canto de losa: 2,50metros (luz/canto=14,0)
- Longitud de voladizos extremos 1,90 metros
- Longitud de la losa central 2.20 metros
- Aligeramientos de 1,30 m de diámetro y 1.85 m de altura



1.3.1.8. Sección tipo 8. - luz máxima 35 metros. ancho 31.30 m.

Esta sección se corresponde a viaductos situados en una zona de adelantamiento y estacionamiento de trenes, PAET. Esto implica un ensanchamiento de la plataforma ferroviaria. Para este caso se ha considerado una sección tipo que está constituida por dos tableros adyacentes en losa de hormigón postesado, formado cada uno de ellos por un núcleo central y voladizos laterales hasta completar el ancho total del tablero.

El núcleo central va aligerado mediante aligeramientos cilíndricos longitudinales de sección transversal circular alargada. Las principales características de esta sección tipo son:

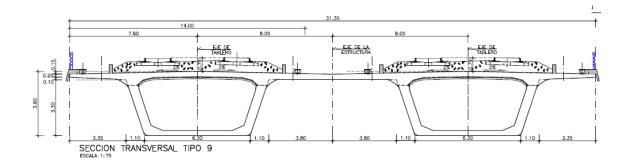
- Luz del vano: 30 35 metros
- Canto de losa: 2,50metros (luz/canto=14,0)
- Longitud de voladizos extremos 2,50 metros
- Longitud de la losa central 5,90 metros
- Aligeramientos de 1,30 m de diámetro y 1.85 m de altura

1.3.1.9. Sección tipo 9. - luz máxima 55 metros. ancho 31.30 m.

Esta sección se corresponde a viaductos situados en una zona de adelantamiento y estacionamiento de trenes, PAET. Esto implica un ensanchamiento de la plataforma ferroviaria. Para este caso se ha considerado una sección tipo que está constituida por dos tableros adyacentes en sección cajón de hormigón postesado de canto constante. Cada tablero está formado por un núcleo central y voladizos laterales hasta completar el ancho total del tablero.

Las principales características de esta sección tipo son:

■ Luz del vano: 50.0 – 55.0 metros


Canto de viga: 3.80 m (luz/canto =14,5)

Espesor de almas: 45 cm

Espesor en cara inferior: 30 cm

Longitud de voladizos extremos: 3,35 m

Longitud de la losa central 7,60 metros

La tipología general de pilas a emplear será tabique, habitualmente empleadas en ferrocarril, y la cimentación se ajustará a las indicaciones del estudio geotécnico.

En el caso de los estribos se emplearán tipologías también tradicionales siempre que sea posible, es decir, muros frontales con muros en vuelta terminados en aletas belgas.

El tablero descansará sobre pilas y estribos empleando apoyos pot (para grandes cargas), combinando distintas tipologías (libre, unidireccionales y rígidos) para que junto al estribo fijo se asegure el comportamiento longitudinal del tablero.

1.3.2. Pérgolas

Es la solución empleada para solventar el cruce con esviaje elevado, consiste en realizar una estructura recta de longitud considerable, función del esviaje en el cruce, sobre una de las vías cruzando la otra sobre esta.

Las posibles tipologías a emplear serán:

- Estructura in situ.
- Estructura de tablero prefabricado, ejecutado con vigas sobre las que se ejecuta una losa in situ.

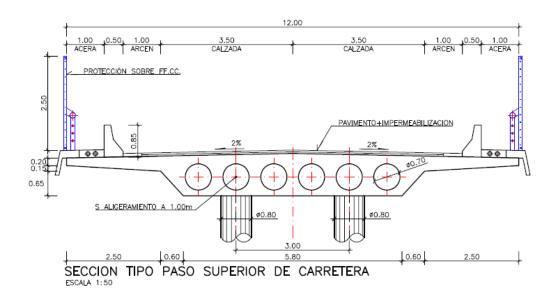
Lo normal es ejecutarlas con tablero prefabricado, ya que normalmente la vía sobre la que se cruza está en uso y no suele ser viable su corte. El tablero prefabricado puede ser ejecutado con vigas en doble T o con artesas, aunque lo normal es recurrir al primero de los tipos, doble T, debido al menor peso lo que facilita su manipulación.

Se trata de estructuras más caras en comparación con tableros normales, el motivo es la repercusión de los estribos de gran longitud a ambos lados de la vía a salvar.

Con la finalidad de reducir el coste se suele recurrir a dejarles abiertos en la mayor parte posible, generando así una viga cargadero sobre pilares para el apoyo del tablero superiores.

El ferrocarril mantendrá los 14 m de anchura de la sección tipo sobre las vigas del tablero de la pérgola, la cual irá apoyada sobre la losa in situ. La zona de estructura no afectada por la vía superior se dejará aligerada entre vigas lo cual, además de ser más económico, favorece la visibilidad en la vía inferior.

La cimentación de los estribos dependerá de la geotecnia particular de la ubicación de la pérgola, sin olvidar la posible repercusión económica en la estructura.


1.3.3. Pasos superiores

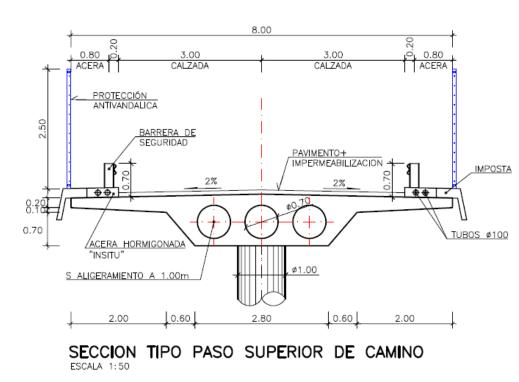
El ancho del tablero de los pasos superiores vendrá condicionado por el de la sección transversal de la vía a la que da servicio. Al objeto de homogeneizar las soluciones propuestas en esta fase de Estudio Informativo se han considerado dos tipologías, pasos superiores de carreteras y pasos superiores de caminos, cuyas características y geometría se explican en los apartados siguientes.

1.3.3.1. Pasos superiores de carreteras

Para la reposición de carreteras, se considera una anchura mínima de calzada y arcenes de 9 m, a los que se añaden aceras de 1,0 m de anchura en ambos lados. Estas quedarán separadas de los arcenes por barreras rígidas de hormigón de 0,50 m. Todos estos elementos dan lugar a un ancho de tablero de 12,0 m, quedando éste rematado en ambos lados por sendas impostas sobre la que se dispondrán barreras antivandálicas.

Se empleará una solución de losa postesada hiperestática con tres vanos y la siguiente sección transversal

La longitud de cada estructura y la distribución de luces dependen del esviaje con el que la carretera cruza las vías, y de la cota relativa de la rasante de la carretera respecto a éstas.


El gálibo vertical mínimo a respetar en los pasos superiores, medido entre la cota superior de carril e intradós de la estructura, será de 7,00 m.

Las pilas situadas a cada lado de la plataforma ferroviaria se situarán de modo que su cara interior quede al menos a 5 m del eje de la vía más próxima

1.3.3.2. Pasos superiores de caminos

Los pasos superiores de camino contarán con una anchura de calzada mínima de 6 m, y dos aceras laterales de 0,8m, separadas de la calzada por elementos de protección necesarios consistentes en barreras metálicas tipo bionda. La anchura total del tablero será, por tanto, de 8,0 m, quedando éste rematado en ambos lados por sendas impostas sobre la que se dispondrán barreras antivandálicas.

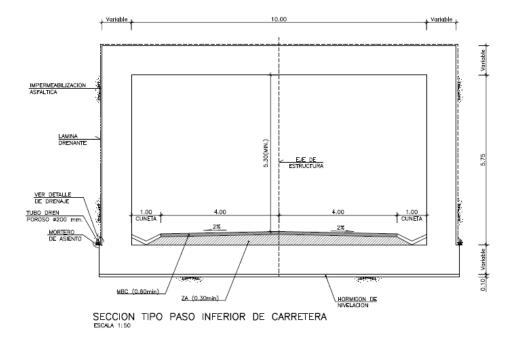
La solución propuesta para los pasos superiores de caminos consiste igualmente en puentes de tres vanos, cuyo tablero estará constituido por una losa maciza de hormigón postesado "in situ" con voladizos laterales como la que se observa en la figura.

Al igual que en los pasos superiores de carreteras, las pilas situadas a ambos lados de la plataforma ferroviaria se situarán de modo que su cara interior quede como mínimo a 5 m del eje de la vía más próxima.

Del mismo modo, el gálibo vertical mínimo entre cota superior del carril e intradós de la estructura será de 7 m.

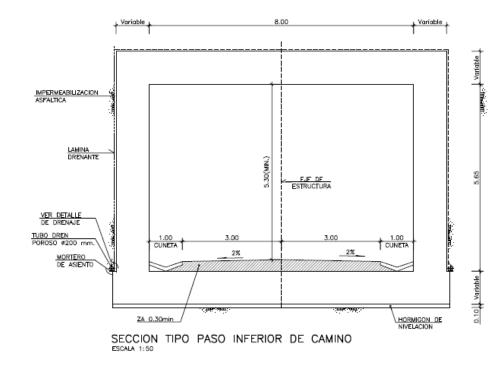
1.3.4. Pasos inferiores

Las estructuras previstas para los pasos inferiores tanto de carreteras como de caminos consisten en marcos de hormigón armado ejecutados "in situ", que constan de un dintel superior del que parten sendos hastiales solidarios, los cuales se empotran a su vez en la losa de fondo del cajón (solera).


El canto del dintel y la solera así como el ancho de los hastiales se ha de estimar en función de la altura de tierras que gravita sobre cada estructura.

En general, y salvo que por condiciones estéticas, ecológicas o de geometría sea necesario modificar el criterio, se dispondrán aletas triangulares rectas a 30° con el eje del vial inferior. En las embocaduras de las obras enterradas (de tipo marco, pórtico, bóveda o tubo) con cobertera de tierras y esviadas, el plano de corte en el encuentro de la obra con el talud del terraplén en uno y otro extremo de la misma se mantendrá paralelo al eje del trazado principal.

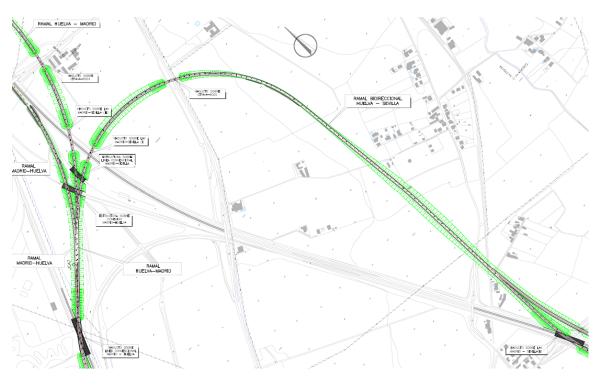
1.3.4.1. Pasos inferiores de carreteras


El gálibo horizontal libre de los pasos inferiores deberá respetar al menos la anchura de la plataforma más dos metros, correspondientes a dos cunetas pisables de hormigón. En el caso de los pasos inferiores, se considera una anchura de plataforma mínima de 8.0 m. Las cunetas tendrán una anchura de 1 m, por lo que el gálibo interior libre del paso será de 10 m.

El gálibo vertical en el punto más desfavorable de la plataforma deberá ser de al menos 5,30 m.

1.3.4.2. Pasos inferiores de caminos

La anchura interior del marco en este caso será de 8 m, correspondientes a un ancho de plataforma de 6 m más cunetas de 1 m a cada lado. El gálibo vertical en el punto más desfavorable de la plataforma deberá ser de al menos 5,30 m. Una sección tipo se puede observar en la siguiente figura



1.4. Relación de estructuras, viaductos

En los siguientes apartados se incluyen una serie de tablas correspondientes a la ubicación y características básicas de las estructuras de cada una de las alternativas de trazado desarrolladas en este estudio, así como del nudo de Majarabique que es común a todas las alternativas.

1.4.1. Nudo de Majarabique

Este Nudo es común a todas las alternativas analizadas. En él se dispone un total de ocho estructuras, todas ellas motivadas por el cruce de la nueva vías con vías actualmente existentes, bien sean de ferrocarril o de carreteras.

Esquema general del nudo

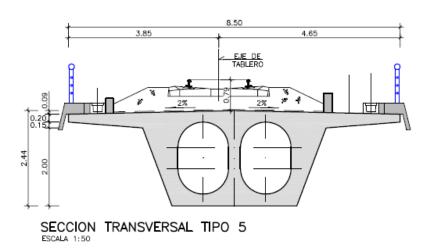
Las estructuras afectan a tres ramales ferroviarios, pudiendo en algunos casos ser comunes a varios:

- Ramal Bidireccional Huelva Sevilla
- Ramal Huelva Madrid
- Ramal Madrid Huelva

En general nos encontramos con dos tipos de estructuras:

Viaductos de vía única. Sección Tipo 5

Pérgolas


1.4.1.1. Viaductos sección tipo 5.

Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y vía única. Este tipo de viaductos se resolverá mediante losa postesada aligerada

El ancho de los tableros en vía doble será de 8.50 m.

En la alternativa tratada se encuentra un total de cuatro viaductos con la tipología analizada,

Ramal	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
Bidireccional	50+220	50+290	70	Viaducto sobre LAV Madrid-Sevilla (I)	20 - 30 -20	Profunda
Bidireccional	50+660	50+722	62	Viaducto sobre Ctra. A-8005	17 - 28 - 17	Profunda
Huelva- Madrid	31+029	31+134	105	Viaducto sobre LAV Madrid-Sevilla (III)	35 - 35 - 35	Profunda
Huelva- Madrid	31+370	31+440	70	Viaducto sobre Ctra. A-8003	20 - 30 - 20	Profunda

1.4.1.2. Pérgolas

Es la solución empleada para solventar el cruce con esviaje elevado, o cuando confluye el cruce de varios ramales adyacentes. Consiste en realizar una estructura recta de longitud considerable, función del esviaje en el cruce, sobre una de las vías cruzando la otra sobre esta.

La tipología a emplear para estas estructuras será la de un tablero prefabricado, ejecutado con vigas doble T sobre las que se ejecuta una losa in situ.

En esta alternativa nos encontramos con dos tipos fundamentales de estructuras:

Estructuras con un esviaje elevado.

El esviaje es tan elevado que se ha optado por ampliar parcialmente el gálibo imprescindible para el cruce de la vía inferior en ambos extremos, de forma que permita un corte de la estructura perpendicular a la vía superior.

Con ello se evita una transición incorrecta del carril de terreno a estructura debido al elevado esviaje. Existen dos estructuras de este tipo:

Ramal	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
Bidireccional	52+523	52+638	115	Pérgola sobre LAV Madrid-Sevilla (II)	Pérgola	Profunda
Huelva- Madrid	30+250	30+399	149	Pérgola sobre Línea convencional Madrid-Huelva	Pérgola	Profunda

• Estructuras con cruces múltiples

Es el caso de varios ramales pasando por encima de una vía existente muy próximas entre sí. Se diseña así una estructura de mayor longitud, que abarca todos los cruces, cubriendo únicamente las zonas necesarias para el paso de plataformas.

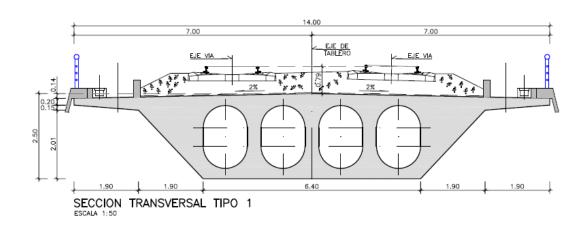
Existen otras dos estructuras de este tipo:

Ramal	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
Bidireccional	50+101	50+101	-	Estructura sobre Conexión Madrid- Sevilla	Pérgola	Profunda
Bidireccional	50+157	50+157	-	Viaducto sobre Línea convencional Madrid-Sevilla	Pérgola	Profunda

1.4.2. Alternativa 1.1

En la alternativa analizada aparecen un total de 28 estructuras que se han agrupado según tipologías para poder tratarles a continuación.

1.4.2.1. Viaductos sección tipo 1.

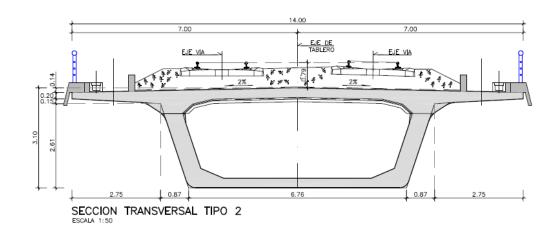

Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y vía doble. Este tipo de viaductos se resolverá mediante losa postesada aligerada

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 19 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
12+582	12+652	70	Viaducto Arroyo del Judio	20 - 30 -20	Profunda
12+700	12+880	180	Viaducto Autovia SE-40	20- 35x4 - 20	Profunda
19+837	19+907	70	Viaducto Arroyo Valdegallinas	20 - 30 -20	Profunda
22+973	23+083	110	Viaducto Arroyo Valdárrago	20-35-35-20	Profunda
31+417	31+487	70	Viaducto Arroyo Santa María	20 - 30 -20	Profunda
32+007	32+084	77	Viaducto Arroyo Tamujoso	21-35-21	Profunda
32+425	32+502	77	Viaducto Garganta de Barbacena	21-35-21	Profunda
34+087	34+253	166	Viaducto Arroyo de la Tejada	21- 30x4 -25	Profunda
39+858	39+920	62	Viaducto Arroyo del Cahozo	17 - 28 -17	Profunda
50+010	50+150	140	Viaducto Arroyo Fuente Santa II	35x4	Profunda
50+520	50+590	70	Viaducto Arroyo Giraldo	20 - 30 -20	Profunda
51+528	51+598	70	Viaducto 1	20 - 30 -20	Profunda
59+148	58+210	62	Viaducto Arroyo Bayas	17 - 28 - 17	Profunda
60+859	60+921	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda
63+749	63+819	70	Viaducto Arroyo Arzobispo	20 - 30 -20	Profunda
80+645	80+715	70	Arroyo de Canillas	20 - 30 - 20	Profunda

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
83+579	83+641	62	Viaducto 2	17 - 28 - 17	Profunda
83+719	83+781	62	Viaducto 3	17 - 28 - 17	Profunda

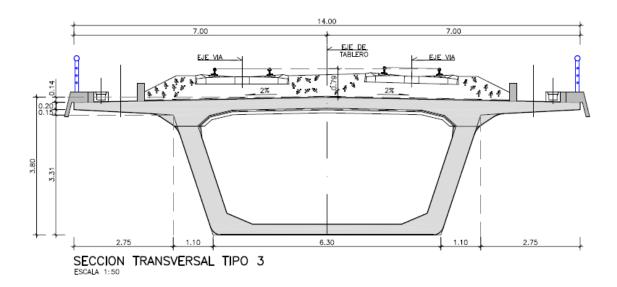

1.4.2.2. Viaductos sección tipo 2.

Este grupo comprende aquellos viaductos con luces máximas de 40.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 3 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda
75+379	75+679	300	Viaducto Arroyo Candon	28 - 40x6 - 32	Profunda
87+695	87+845	150	Ribera de Nicoba	20 - 30 - 35 - 40 - 25	Profunda

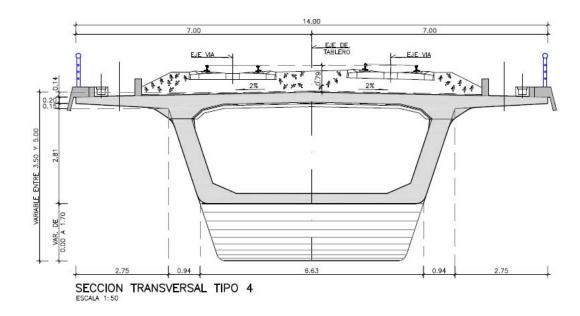

1.4.2.3. Viaductos sección tipo 3.

Este grupo comprende aquellos viaductos con luces máximas de 50.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 3 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda
5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40- 35-45x2-55x7-45x2-28	Profunda
69+791	70+850	1059	Viaducto Rio Tinto	41 - 55x18 - 28	Profunda

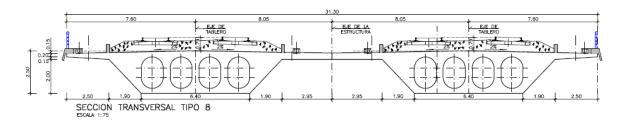

1.4.2.4. viaductos sección tipo 4.

Este grupo comprende aquellos viaductos con luces máximas de 65.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto variable. El canto es máximo en pilas, de 5.0 metros. Y mínimo en centro de vano, de 3.50 metros

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un único viaducto con esta tipología:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
23+720	24+770	1050	Viaducto Río Guadiamar	35 - 54x4 - 65 - 54x13 - 32	Profunda



1.4.2.5. Viaductos sección tipo 8.

Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y ancho 31.3.40. Este tipo de viaductos, correspondientes a zonas de estacionamiento y adelantamiento de trenes, cuentan con un ancho de tablero muy superior a lo habitual. Por ello se ha diseñado mediante dos tableros adyacentes de losa postesada aligerada

En la alternativa tratada se encuentra un viaducto con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
77+531	77+593	62	Arroyo del Valcarejo	17 - 28 - 17	Profunda

1.4.2.6. Pérgolas

Es la solución empleada para solventar el cruce con esviaje elevado, consiste en realizar una estructura recta de longitud considerable, función del esviaje en el cruce, sobre una de las vías cruzando la otra sobre esta.

La tipología a emplear para estas estructuras será la de un tablero prefabricado, ejecutado con vigas doble T sobre las que se ejecuta una losa in situ.

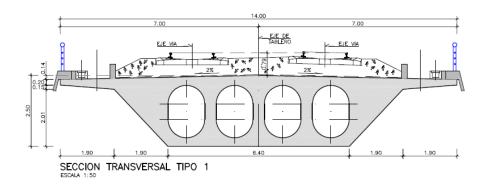
En esta alternativa nos encontramos con dos estructuras de este tipo:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
57+784	57+955	171	Pergola sobre ffcc Sevilla - Huelva	Pérgola	Profunda
92+420	92+625	205	Pergola	Pérgola	Profunda

1.4.3. Alternativa 1.2

En la alternativa analizada aparecen un total de 28 estructuras que se han agrupado según tipologías para poder tratarles a continuación.

1.4.3.1. Viaductos sección tipo 1.

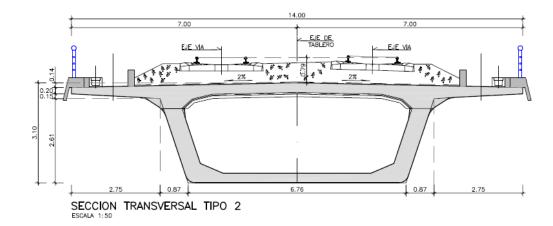

Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y vía doble. Este tipo de viaductos se resolverá mediante losa postesada aligerada

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 15 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentació n
12+582	12+652	70	Viaducto Arroyo del Judio	20 - 30 -20	Profunda
12+582	12+652	70	Viaducto Arroyo del Judio	20 - 30 -20	Profunda
12+700	12+880	180	Viaducto Autovia SE-40	20- 35x4 - 20	Profunda
19+837	19+907	70	Viaducto Arroyo Valdegallinas	20 - 30 -20	Profunda
22+973	23+083	110	Viaducto Arroyo Valdárrago	20-35-35-20	Profunda

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentació n
31+417	31+487	70	Viaducto Arroyo Santa María	20 - 30 -20	Profunda
32+007	32+084	77	Viaducto Arroyo Tamujoso	21-35-21	Profunda
32+425	32+502	77	Viaducto Garganta de Barbacena	21-35-21	Profunda
34+087	34+253	166	Viaducto Arroyo de la Tejada	21- 30x4 -25	Profunda
39+878	39+898	62	Viaducto Arroyo del Cahozo	17 - 28 -17	Profunda
50+940	51+050	110	Viaducto Arroyo Giraldo	20 - 35 -35 - 35 - 20	Profunda
51+500	51+650	150	Viaducto Arroyo del Juncal	18 - 30x3 - 25 - 17	Profunda
56+510	56+638	128	Viaducto Carretera A-493	23 - 35 - 35 - 35	Profunda
60+763	60+825	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda
63+653	63+723	70	Viaducto Arroyo Arzobispo	20 - 30 -20	Profunda
77+435	77+497	62	Arroyo de Valcarejo	17 - 28 - 17	Profunda
80+549	80+619	70	Arroyo de canillas	20 - 30 - 20	Profunda
83+483	83+545	62	Viaducto 2	17 - 28 - 17	Profunda
83+623	83+685	62	Viaducto 3	17 - 28 - 17	Profunda

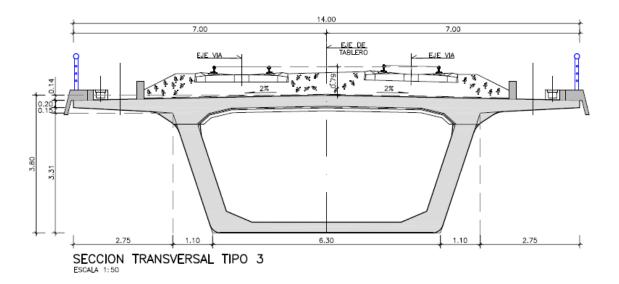

1.4.3.2. Viaductos sección tipo 2.

Este grupo comprende aquellos viaductos con luces máximas de 40.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 4 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
2+925	3+222 297 Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda		
54+120	54+220	100	Viaducto Arroyo Tortillo	30 - 40 - 30	Profunda
75+280	75+580	300	Viaducto Arroyo Candon	28 - 40x6 - 32	Profunda
87+600	87+750	150	Ribera de Nicoba	20 - 30 - 35 - 40 - 25	Profunda


1.4.3.3. Viaductos sección tipo 3.

Este grupo comprende aquellos viaductos con luces máximas de 50.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 3 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda
5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40- 35-45x2-55x7-45x2-28	Profunda
69+695	70+754	1059	Viaducto Rio Tinto	41 - 55x18 - 28	Profunda

1.4.3.4. Viaductos sección tipo 4.

Este grupo comprende aquellos viaductos con luces máximas de 65.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto variable. El canto es máximo en pilas, de 5.0 metros. Y mínimo en centro de vano, de 3.50 metros

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un único viaducto con esta tipología:

1.4.3.5. Pérgolas

Es la solución empleada para solventar el cruce con esviaje elevado, consiste en realizar una estructura recta de longitud considerable, función del esviaje en el cruce, sobre una de las vías cruzando la otra sobre esta.

La tipología a emplear para estas estructuras será la de un tablero prefabricado, ejecutado con vigas doble T sobre las que se ejecuta una losa in situ.

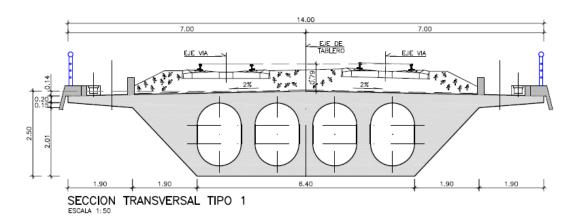
En esta alternativa nos encontramos con dos estructuras de este tipo:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
58+734	58+996	262	Pérgola FFCC Sevilla-Huelva/Arroyo Bayas	Pérgola	Profunda
92+323	92+528	205	Pergola	Pérgola	Profunda

1.4.4. Alternativa 2.1

En la alternativa analizada aparecen un total de 31 estructuras, treinta en el eje principal de la nueva vía y una consecuencia de una de las reposiciones de vía propuestas. Todas ellas se han agrupado según tipologías para poder tratarles a continuación.

1.4.4.1. Viaductos sección tipo 1.


Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y vía doble. Este tipo de viaductos se resolverá mediante losa postesada aligerada

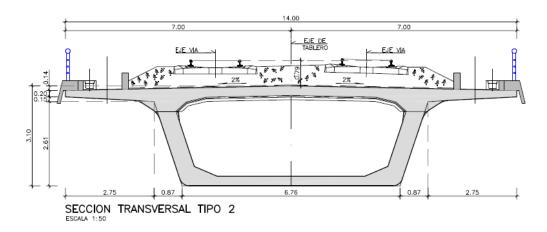
El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 13 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
12+365	12+475	110	Viaducto Arroyo del Judio	20 - 35 - 35 -20	Profunda
27+850	27+970	120	Viaducto Arroyo de la Tejada	25 - 35 -35 - 25	Profunda
49+210	49+310	100	Viaducto Arroyo de la Fuente	20 - 30 - 30 -20	Profunda
58+198	58+260	62	Viaducto Arroyo Bayas	17 - 28 - 17	Profunda

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
59+911	59+973	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda
66+988	67+163	175	Viaducto Arroyo de Lavapies	20 - 35x4 -20	Superficial
67+858	67+920	62	Viaducto Arroyo de la Adelfa	17 - 28 - 17	Superficial
75+935	76+055	120	Viaducto Arroyo del Valcarejo	25 - 35 - 35 -25	Superficial
79+491	79+631	140	Viaducto Arroyo Canillas	20 - 35 - 35 - 30 - 20	Superficial
83+732	83+794	62	Viaducto Arroyo de los Prados	17 - 28 - 17	Profunda
86+707	86+832	125	Viaducto Autovia A-49	30 - 30 -35 -30	Profunda
87+242	87+312	70	Viaducto sobre carretera N-431	20 - 30 - 20	Profunda

1.4.4.2. Viaductos sección tipo 2.


Este grupo comprende aquellos viaductos con luces máximas de 40.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

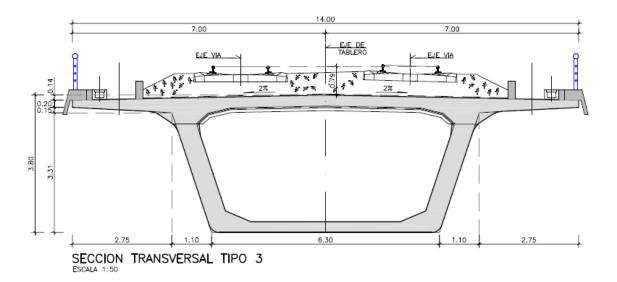
El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 8 viaductos con la tipología analizada:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda
17+570	17+800	230	Viaducto Arroyo De la Coriana. OK	25-40-45-45-40-35	Profunda

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
37+815	37+925	110	Ferrocarril	40 - 40 - 30 Esviado	Profunda
41+215	41+545	330	Viaducto Arroyo Alcarayon	20 - 35x4 - 40x2 -35x2 - 20	Profunda
63+380	63+590	210	Viaducto Arroyo del Arzobispo	25 - 40x4 - 25	Superficial
73+424	73+724	300	Viaducto Arroyo Candón	25 - 40x6 -35	Superficial
74+043	74+253	210	Viaducto Arrollo Bajondillo	25 - 40x4 - 25	Superficial
87+945	88+88	943	Viaducto sobre H-31 y ffcc Huelva-Zafra	28 - 40X3 - 45X7 - 40x12 Esviaje parcial	Profunda

1.4.4.3. Viaductos sección tipo 3.

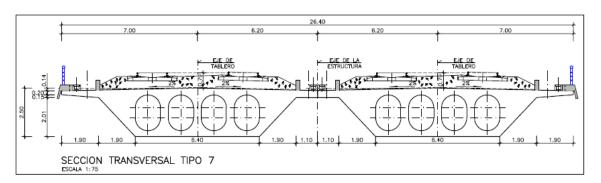

Este grupo comprende aquellos viaductos con luces máximas de 50.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 5 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda
5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40- 35-45x2-55x7-45x2-28	Profunda
23+072	24+270	1198	Viaducto Rio Guadimar	26 -45 -55x4 -50x3 -55x13 -42	Profunda

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
64+690	65+250	560	Viaducto Rio Tinto	45 - 55x8 - 45 - 30	Superficial

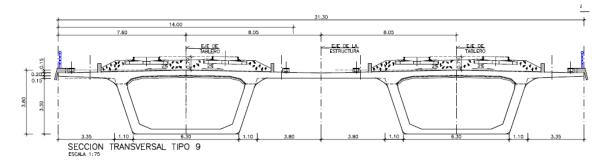


1.4.4.4. Viaductos sección tipo 7.

Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y ancho 26.40. Este tipo de viaductos, correspondientes a zonas de estacionamiento y adelantamiento de trenes, cuentan con un ancho de tablero muy superior a lo habitual. Por ello se ha diseñado mediante dos tableros adyacentes de losa postesada aligerada

En la alternativa tratada se encuentra un viaducto con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
25+440	25+510	70	Viaducto Arroyo Acebuchal	20 - 30 - 30	



1.4.4.5. Viaductos sección tipo 9.

Este grupo comprende aquellos viaductos con luces máximas de 55.0 y ancho 31.30. Este tipo de viaductos, correspondientes a zonas de estacionamiento y adelantamiento de trenes, cuentan con un ancho de tablero muy superior a lo habitual. Por ello se ha diseñado mediante dos tableros adyacentes sección cajón de hormigón postesado.

En la alternativa tratada se encuentra un viaducto con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
25+920	26+330	410	Viaducto Balsa	40 - 55x6 - 40	Profunda

1.4.4.6. Pérgolas

Es la solución empleada para solventar el cruce con esviaje elevado, consiste en realizar una estructura recta de longitud considerable, función del esviaje en el cruce, sobre una de las vías cruzando la otra sobre esta.

La tipología a emplear para estas estructuras será la de un tablero prefabricado, ejecutado con vigas doble T sobre las que se ejecuta una losa in situ.

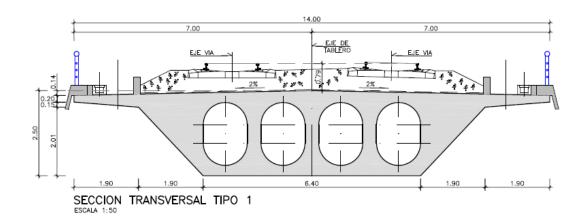
En esta alternativa nos encontramos con cinco estructuras de este tipo:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
48+460	48+660	200	Pérgola FFCC		Profunda
56+800	56+953	153	Pérgola FFCC Sevilla - Huelva F		Profunda
61+760	62+210	450	Pérgola sobre FFCC Sevilla–Huelva y CTRA A+472	Pérgola	Profunda
90+300	90+740	440	Pérgola sobre Ctra. A-5000 y ffcc Huelva-Zafra	Pérgola	Profunda
93+530	93+735	205	Pérgola sobre ffcc	Pérgola	Profunda

1.4.5. Alternativa 2.2

En la alternativa analizada aparecen un total de 36 estructuras, treinta y cinco en el eje principal de la nueva vía y una consecuencia de una de las reposiciones devía propuestas. Todas ellas se han agrupado según tipologías para poder tratarles a continuación.

1.4.5.1. Viaductos sección tipo 1.


Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y vía doble. Este tipo de viaductos se resolverá mediante losa postesada aligerada

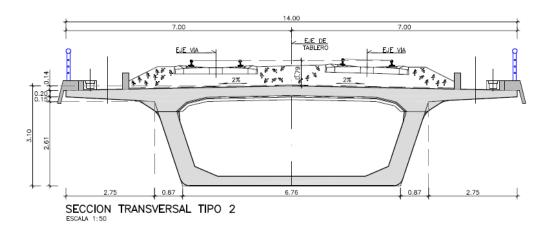
El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 16 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
12+365	12+475	110	Viaducto Arroyo del Judio	20 - 35 - 35 -20	Profunda
27+850	27+970	120	Viaducto Arroyo de la Tejada	25 - 35 -35 - 25	Profunda
47+908	47+970	62	Viaducto Ferrocarril	14 - 28 -17 Esviado	Profunda
48+150	48+270	120	Viaducto Carretera-Fuente Santa I	15 - 30x3 - 15	Profunda
49+264	49+326	62	Viaducto Fuente Santa I (B)	17 - 28 - 17	Profunda
50+317	50+429	112	Arroyo de los Morantes	21 - 35 - 35 - 21	Profunda
50+877	51+027	150	Viaducto Fuente Santa II	15 - 30x4 -15	Profunda
55+887	56+015	128	Viaducto A-493	23 - 35 - 35 - 35	Profunda
60+140	60+202	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda
67+218	67+393	175	Viaducto Arroyo de Lavapies	20 - 35x4 -20	Superficial
68+083	68+145	62	Viaducto Arroyo de la Adelfa	17 - 28 - 17	Superficial
76+166	76+286	120	Viaducto Arroyo del Valcarejo	25 - 35 - 35 -25	Superficial
79+723	79+863	140	Viaducto Arroyo Canillas	20 - 35 - 35 - 30 - 20	Superficial
83+963	84+025	62	Viaducto Arroyo de los Prados	17 - 28 - 17	Profunda

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
86+939	87+064	125	Viaducto Autovia A-49	30 - 30 -35 -30	Profunda
87+474	87+544	70	Viaducto sobre carretera N-431	20 - 30 - 20	Profunda

1.4.5.2. Viaductos sección tipo 2.

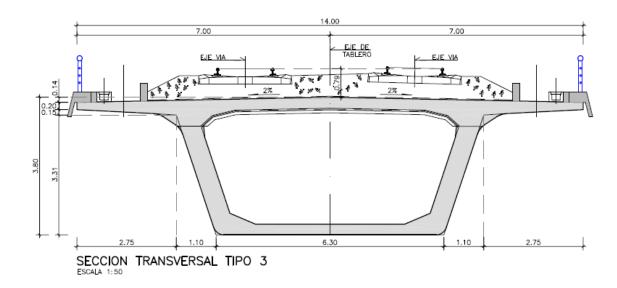

Este grupo comprende aquellos viaductos con luces máximas de 40.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 10 viaductos con la tipología analizada:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda
17+570	17+800	230	Viaducto Arroyo De la Coriana	25-40-45-45-40-35	Profunda
37+815	37+925	110	Ferrocarril	40 - 40 - 30 Esviado	Profunda
41+215	41+545	330	Viaducto Arroyo Alcarayon	20 - 35x4 - 40x2 -35x2 - 20	Profunda
48+560	48+810	250	Viaducto Fuente Santa I (A)	25 - 40x5 - 25	Profunda
53+497	53+597	100	Viaducto Arroyo Río Tortillo	30 - 40 - 30	Profunda
63+606	63+816	210	Viaducto Arroyo del Arzobispo	25 - 40x4 - 25	Superficial
73+656	73+956	300	Viaducto Arroyo Candón	25 - 40x6 -35	Superficial

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
74+275	74+485	210	Viaducto Arrollo Bajondillo	25 - 40x4 - 25	Superficial
88+183	89+126	943	Viaducto sobre H-31 y ffcc Huelva- Zafra	28 - 40X3 - 45X7 - 40x12	Profunda

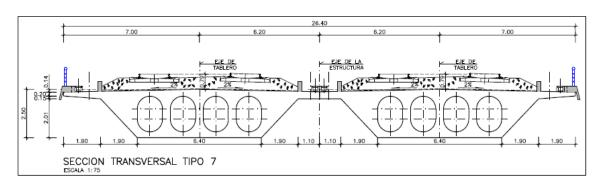

1.4.5.3. Viaductos sección tipo 3.

Este grupo comprende aquellos viaductos con luces máximas de 50.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 5 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda
5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40- 35-45x2-55x7-45x2-28	Profunda
23+072	24+270	1198	Viaducto Rio Guadimar	26 -45 -55x4 -50x3 -55x13 -42	Profunda
25+920	26+330	410	Viaducto Balsa	40 - 55x6 - 40	Profunda
64+916	65+476	560	Viaducto Rio Tinto	45 - 55x8 - 45 - 30	Superficial

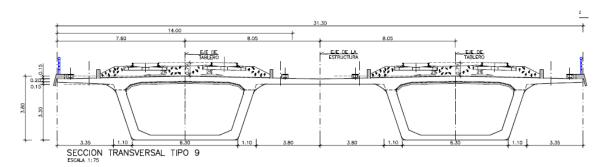


1.4.5.4. Viaductos sección tipo 7.

Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y ancho 26.40. Este tipo de viaductos, correspondientes a zonas de estacionamiento y adelantamiento de trenes, cuentan con un ancho de tablero muy superior a lo habitual. Por ello se ha diseñado mediante dos tableros adyacentes de losa postesada aligerada

En la alternativa tratada se encuentra un viaducto con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
25+450	25+520	70	Viaducto Arroyo Acebuchal	20 - 30 - 30	Profunda



1.4.5.5. Viaductos sección tipo 9.

Este grupo comprende aquellos viaductos con luces máximas de 55.0 y ancho 31.30. Este tipo de viaductos, correspondientes a zonas de estacionamiento y adelantamiento de trenes, cuentan con un ancho de tablero muy superior a lo habitual. Por ello se ha diseñado mediante dos tableros adyacentes sección cajón de hormigón postesado.

En la alternativa tratada se encuentra un viaducto con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
25+920	26+330	410	Viaducto Balsa	40 - 55x6 - 40	Profunda

1.4.5.6. Pérgolas

Es la solución empleada para solventar el cruce con esviaje elevado, consiste en realizar una estructura recta de longitud considerable, función del esviaje en el cruce, sobre una de las vías cruzando la otra sobre esta.

La tipología a emplear para estas estructuras será la de un tablero prefabricado, ejecutado con vigas doble T sobre las que se ejecuta una losa in situ.

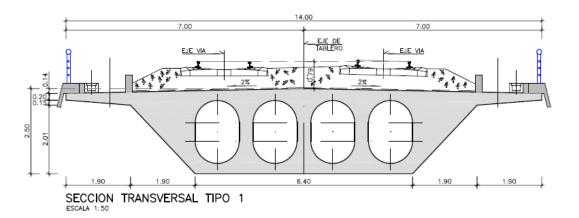
En esta alternativa nos encontramos con cuatro estructuras de este tipo:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
58+115	58+377	262	Pérgola FC Sevilla - Huelva - Arroyo Bayas		Profunda
62+000	62+450	450	Pérgola sobre FFCC Sevilla-Huelva y CTRA A+472		Profunda
90+560	91+000	440	Pérgola sobre Ctra. A-5000 y ffcc Huelva-Zafra		Profunda
93+796	94+001	205	Pérgola sobre ffcc	Pérgola	Profunda

1.4.6. Alternativa 3.1

En la alternativa analizada aparecen un total de 34 estructuras, treinta y tres en el eje principal de la nueva vía y una consecuencia de una de las reposiciones de vía propuestas. Todas ellas se han agrupado según tipologías para poder tratarles a continuación.

1.4.6.1. Viaductos sección tipo 1.

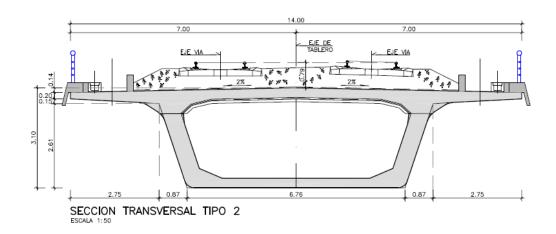

Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y vía doble. Este tipo de viaductos se resolverá mediante losa postesada aligerada

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 21 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
12+582	12+652	70	Viaducto Arroyo del Judio	/iaducto Arroyo del Judio 20 - 30 -20	
12+700	12+880	180	Viaducto Autovia SE-40	20- 35x4 - 20	Profunda
19+837	19+907	70	Viaducto Arroyo Valdegallinas	20 - 30 -20	Profunda
22+973	23+083	110	Viaducto Arroyo Valdárrago	20-35-35-20	Profunda
31+417	31+487	70	Viaducto Arroyo Santa María	20 - 30 -20	Profunda
32+007	32+084	77	Viaducto Arroyo Tamujoso	21-35-21	Profunda
32+425	32+502	77	Viaducto Garganta de Barbacena	21-35-21	Profunda
34+087	34+253	166	Viaducto Arroyo de la Tejada	21- 30x4 -25	Profunda
39+858	39+920	62	Viaducto Arroyo del Cahozo	17 - 28 -17	Profunda
50+010	50+150	140	Viaducto Arroyo Fuente Santa II	35x4	Profunda
50+520	50+590	70	Viaducto Arroyo Giraldo	20 - 30 -20	Profunda
51+528	51+598	70	Viaducto 1	20 - 30 -20	Profunda
59+148	58+210	62	Viaducto Arroyo Bayas	17 - 28 - 17	Profunda
60+859	60+921	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda
67+937	68+112	175	Viaducto Arroyo de Lavapies	20-35-30-35-35-20	Superficial

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
68+802	68+864	62	Viaducto Arroyo de la Adelfa	17 - 28 - 17	Superficial
76+885	77+005	120	Viaducto Arroyo del Valcarejo	25 - 35 - 35 -25	Superficial
80+442	80+582	140	Viaducto Arroyo Canillas	20 - 35 - 35 - 30 - 20	Superficial
84+683	84+745	62	Viaducto Arroyo de los Prados	17 - 28 - 17	Profunda
87+658	87+783	125	Viaducto Autovia A-49	30 - 30 -35 -30	Profunda
88+193	88+263	70	Viaducto sobre carretera N-431	20 - 30 - 20	Profunda

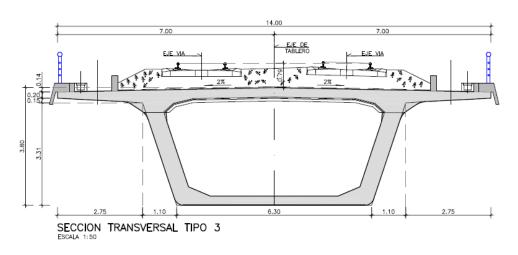

1.4.6.2. Viaductos sección tipo 2.

Este grupo comprende aquellos viaductos con luces máximas de 40.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 5 viaductos con la tipología analizada:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda
64+325	64+535	210	Viaducto Arroyo del Arzobispo	25 - 40x4 - 25	Superficial
74+375	74+675	300	Viaducto Arroyo Candón	25 - 40x6 -35	Superficial
74+994	75+204	210	Viaducto Arrollo Bajondillo	25 - 40x4 - 25	Superficial
88+900	89+843	943	Viaducto sobre H-31 y ffcc Huelva-Zafra	28 - 40X3 - 45X7 - 40x12	Profunda

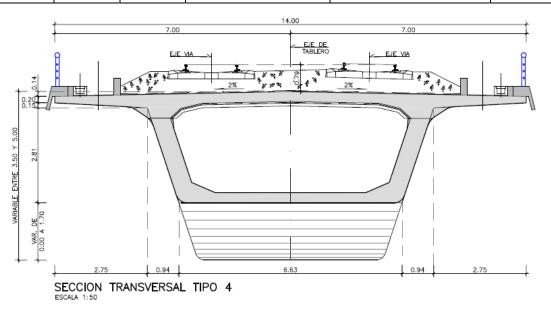

1.4.6.3. Viaductos sección tipo 3.

Este grupo comprende aquellos viaductos con luces máximas de 50.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 3 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda
5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40- 35-45x2-55x7-45x2-28	Profunda
65+635	66+195	560	Viaducto Rio Tinto	45 - 55x8 - 45 - 30	Superficial


1.4.6.4. Viaductos sección tipo 4.

Este grupo comprende aquellos viaductos con luces máximas de 65.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto variable. El canto es máximo en pilas, de 5.0 metros. Y mínimo en centro de vano, de 3.50 metros

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un único viaducto con esta tipología:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
23+720	24+770	1050	Viaducto Río Guadiamar	35 - 54x4 - 65 - 54x13 - 32	Profunda

1.4.6.5. Pérgolas

Es la solución empleada para solventar el cruce con esviaje elevado, consiste en realizar una estructura recta de longitud considerable, función del esviaje en el cruce, sobre una de las vías cruzando la otra sobre esta.

La tipología a emplear para estas estructuras será la de un tablero prefabricado, ejecutado con vigas doble T sobre las que se ejecuta una losa in situ.

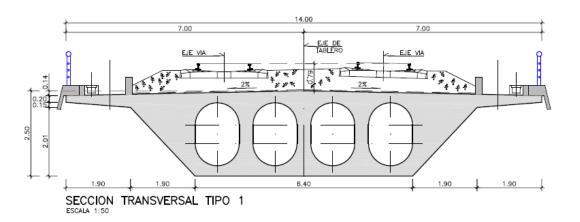
En esta alternativa nos encontramos con tres estructuras de este tipo:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
57+784	57+955	171	Pergola sobre ffcc Sevilla - Huelva		Profunda
62+720	63+170	450	Pérgola sobre FFCC Sevilla-Huelva y CTRA A+472		Profunda
91+290	91+700	410	Pérgola sobre Ctra. A-5000 y ffcc Huelva-Zafra	Pérgola	Profunda
94+515	94+720	205	Pérgola sobre ffcc	Pérgola	Profunda

1.4.7. Alternativa 3.2

En la alternativa analizada aparecen un total de 34 estructuras, treinta y tres en el eje principal de la nueva vía y una consecuencia de una de las reposiciones de vía propuestas. Todas ellas se han agrupado según tipologías para poder tratarles a continuación.

1.4.7.1. Viaductos sección tipo 1.

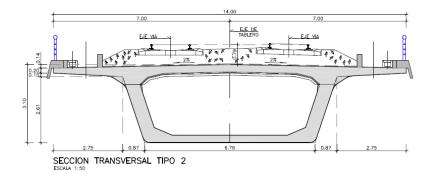

Este grupo comprende aquellos viaductos con luces máximas de 30.0 o 35.0 metros y vía doble. Este tipo de viaductos se resolverá mediante losa postesada aligerada

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 20 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
12+582	12+652	70	Viaducto Arroyo del Judio	20 - 30 -20	Profunda
12+700	12+880	180	Viaducto Autovia SE-40	20- 35x4 - 20	Profunda
19+837	19+907	70	Viaducto Arroyo Valdegallinas	20 - 30 -20	Profunda
22+973	23+083	110	Viaducto Arroyo Valdárrago	20-35-35-20	Profunda
31+417	31+487	70	Viaducto Arroyo Santa María	20 - 30 -20	Profunda
32+007	32+084	77	Viaducto Arroyo Tamujoso	21-35-21	Profunda
32+425	32+502	77	Viaducto Garganta de Barbacena	21-35-21	Profunda

	İ				i e
P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
34+087	34+253	166	Viaducto Arroyo de la Tejada	21- 30x4 -25	Profunda
39+858	39+920	62	Viaducto Arroyo del Cahozo	17 - 28 -17	
50+940	51+050	110	Viaducto Arroyo Giraldo	20 - 35 -35 - 35 - 20	Profunda
51+500	51+650	150	Viaducto Arroyo del Juncal	18 - 30x3 - 25 - 17	Profunda
				23 - 35 - 35 - 35 (SEMI	
56+510	56+638	128	Viaducto Carretera A-493	Esviado)	Profunda
60+763	60+825	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda
67+842	68+017	175	Viaducto Arroyo de Lavapies	20 - 35x4 -20	Superficial
68+707	68+769	62	Viaducto Arroyo de la Adelfa	17 - 28 - 17	
76+790	76+910	120	Viaducto Arroyo del Valcarejo	25 - 35 - 35 -25	Superficial
80+346	80+486	140	Viaducto Arroyo Canillas	20 - 35 - 35 - 30 - 20	Superficial
84+587	84+649	62	Viaducto Arroyo de los Prados	17 - 28 - 17	
87+562	87+687	125	Viaducto Autovia A-49	30 - 30 -35 -30	Profunda
88+097	88+167	70	Viaducto sobre carretera N-431	20 - 30 - 20	Profunda

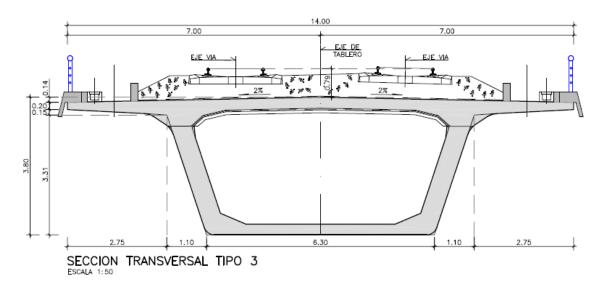

1.4.7.2. Viaductos sección tipo 2.

Este grupo comprende aquellos viaductos con luces máximas de 40.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 6 viaductos con la tipología analizada:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentaci ón
2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda
54+120	54+220	100	Viaducto Arroyo Tortillo	30 - 40 - 30	Profunda
64+230	64+440	210	Viaducto Arroyo del Arzobispo	25 - 40x4 - 25	Superficial
74+280	74+580	300	Viaducto Arroyo Candón	25 - 40x6 -35	Superficial
74+898	75+108	210	Viaducto Arrollo Bajondillo	25 - 40x4 - 25	Superficial
88+800	89+743	943	Viaducto sobre H-31 y ffcc Huelva-Zafra	28 - 40X3 - 45X7 - 40x12 Esviaje parcial	Profunda

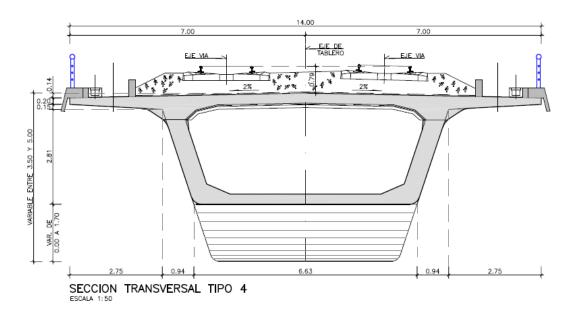

1.4.7.3. Viaductos sección tipo 3.

Este grupo comprende aquellos viaductos con luces máximas de 50.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto constante

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un total de 3 viaductos con la tipología analizada,

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda
5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40- 35-45x2-55x7-45x2-28	Profunda
65+540	66+100	560	Viaducto Rio Tinto	45 - 55x8 - 45 - 30	Superficial


1.4.7.4. Viaductos sección tipo 4.

Este grupo comprende aquellos viaductos con luces máximas de 65.0 metros y vía doble. Este tipo de viaductos se resolverá mediante una sección cajón postesada de canto variable. El canto es máximo en pilas, de 5.0 metros. Y mínimo en centro de vano, de 3.50 metros

El ancho de los tableros en vía doble será de 14 m.

En la alternativa tratada se encuentra un único viaducto con esta tipología:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
23+720	24+770	1050	Viaducto Río Guadiamar	35 - 54x4 - 65 - 54x13 - 32	Profunda

1.4.7.5. Pérgolas

Es la solución empleada para solventar el cruce con esviaje elevado, consiste en realizar una estructura recta de longitud considerable, función del esviaje en el cruce, sobre una de las vías cruzando la otra sobre esta.

La tipología a emplear para estas estructuras será la de un tablero prefabricado, ejecutado con vigas doble T sobre las que se ejecuta una losa in situ.

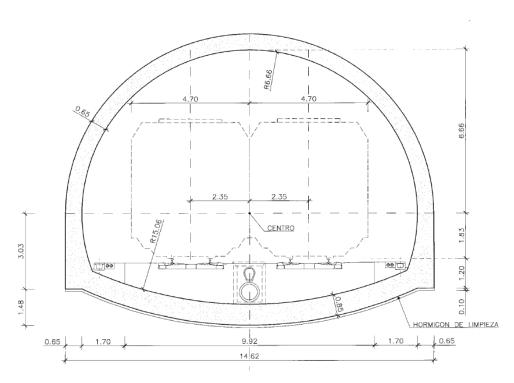
En esta alternativa nos encontramos con tres estructuras de este tipo:

P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación
58+660	59+110	450	Pérgola FFCC Sevilla-Huelva/Arroyo Bayas	Pérgola	Profunda
62+620	63+070	450	Pérgola sobre FFCC Sevilla–Huelva y CTRA A+472	Pérgola	Profunda
91+200	91+610	410	Viaducto sobre Ctra. A-5000 y ffcc Huelva-Zafra	Pérgola	Profunda
94+420	94+625	205	Pérgola sobre ffcc	Pérgola	Profunda

1.5. Falsos túneles

1.5.1. Solución estructural

Con respecto a los falsos túneles se pueden emplear varias modalidades estructurales, entre las que cabe destacar:


1.5.1.1. Túneles entre pantallas

La primera de las tipologías a estudiar se basa en la ejecución de un túnel a través de pantallas laterales (continuas o de pilotes). Esta tipología consigue reducir la zona de obra al limitar la anchura de la trinchera excavada provisionalmente durante la construcción del falso túnel. Se trata de una tipología adecuada en casos donde se debe limitar la banda de afección por la construcción del túnel (zonas urbanas), ya que permite limitar el ancho de excavación al ancho libre entre pantallas.

1.5.1.2. Falso túnel en bóveda

Esta segunda tipología se corresponde con una estructura del túnel compuesta por una bóveda de hormigón armado apoyada sobre una solera "in situ" de hormigón armado. Esta sección requiere una excavación previa que sería un inconveniente en el caso de existir elementos que no pudieran verse afectados por las obras en la zona a excavar. A su favor cuenta con el mejor comportamiento estructural de la bóveda frente a la losa y las pantallas en casos de elevada cobertura de tierras

Dadas las características de las estructuras de este proyecto, la ubicación de los falsos túneles y la cobertura de tierras, se ha optado en todos los casos por una solución tipo bóveda

Sección transversal Falso Túnel

Se prevé el siguiente proceso constructivo:

- Excavación del terreno natural hasta la cota de la solera.
- Ejecución de la solera del túnel.
- Ejecución de la bóveda.
- Relleno final sobre la bóveda hasta cota definitiva.

1.5.2. Relación de falsos túneles

Los falsos túneles presentes en cada una de las alternativas se muestran en las tablas siguientes:

ALTERNATIVA 1.1

P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Geotecnia
16+220	16+380	160	Falso Túnel 1	Mioceno Formación Margas Azules

ALTERNATIVA 1.2

P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Geotecnia
16+220	16+380	160	Falso Túnel 1	Mioceno Formación Margas Azules

ALTERNATIVA 2.1

P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Geotecnia
14+880	15+060	180	Falso túnel 2	Mioceno Margas marrones y arenas
22+580	22+780	200	Falso túnel 3	Mioceno Formación Margas azules
29+420	29+690	270	Falso túnel 4	Mioceno Formación Margas azules
35+830	36+160	330	Falso túnel 5	Mioceno Limos arenosos calcáreos
45+200	45+450	250	Falso túnel 6	Mioceno Limos calcáreos

ALTERNATIVA 2.2

P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Geotecnia
14+880	15+060	180	Falso túnel 2	Mioceno Margas marrones y arenas
22+580	22+780	200	Falso túnel 3	Mioceno Formación Margas azules
29+420	29+690	270	Falso túnel 4	Mioceno Formación Margas azules
35+830	36+160	330	Falso túnel 5	Mioceno Limos arenosos calcáreos
45+200	45+450	250	Falso túnel 6	Mioceno Limos calcáreos

ALTERNATIVA 3.1

P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Geotecnia	
16+220	16+380	160	Falso Túnel 1	Mioceno Formación Margas Azules	

ALTERNATIVA 3.2

P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Geotecnia	
16+220	16+380	160	Falso Túnel 1	Mioceno Formación Margas Azules	

1.6. Cuadros resumen estructuras

1.6.1. Nudo de Majarabique

RAMAL BIDIRECCIONAL HUELVA-SEVILLA VIADUCTOS

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
1	50+101	50+101	-	Estructura sobre Conexión Madrid-Sevilla	Pérgola	Profunda	
2	50+157	50+157	-	Pérgola sobre Línea convencional Madrid-Sevilla	Pérgola	Profunda	
3	50+220	50+290	70	Viaducto sobre LAV Madrid-Sevilla (I)	20 - 30 -20	Profunda	1
4	50+660	50+722	62	Viaducto sobre Ctra. A-8005	17 - 28 - 17	Profunda	1
5	52+523	52+638	115	Pérgola sobre LAV Madrid-Sevilla (II)	Pérgola	Profunda	

RAMAL HUELVA-MADRID VIADUCTOS

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
6	30+250	30+399	149	Pérgola sobre Línea convencional Madrid-Huelva	Pérgola	Profunda	
1	30+883	30+883	-	Estructura sobre Conexión Madrid-Sevilla			
2	30+955	30+955	-	Estructura sobre Línea convencional Madrid-Sevilla			
7	31+029	31+134	105	Viaducto sobre LAV Madrid-Sevilla (III)	35 - 35 - 35	Profunda	1
8	31+370	31+440	70	Viaducto sobre Ctra. A-8003	20 - 30 - 20	Profunda	1

RAMAL MADRID-HUELVA VIADUCTOS

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre Luces	Cimentación	Sección
1	20+500	20+500	-	Estructura sobre Conexión Madrid-Sevilla		
6	20+999	21+148	149	Viaducto sobre Línea convencional Madrid-Huelva		

1.6.2. Alternativa 1.1

VIADUCTOS

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
1	2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda	2
2	4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda	3
3	5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40-35-45x2-55x7-45x2-28	Profunda	3
4	12+582	12+652	70	Viaducto Arroyo del Judio	20 - 30 -20	Profunda	1
5	12+700	12+880	180	Viaducto Autovia SE-40	20- 35x4 - 20	Profunda	1
6	19+837	19+907	70	Viaducto Arroyo Valdegallinas	20 - 30 -20	Profunda	1
7	22+973	23+083	110	Viaducto Arroyo Valdárrago	20-35-35-20	Profunda	1
8	23+720	24+770	1050	Viaducto Río Guadiamar	35 - 54x4 - 65 - 54x13 - 32	Profunda	4
9	31+417	31+487	70	Viaducto Arroyo Santa María	20 - 30 -20	Profunda	1
10	32+007	32+084	77	Viaducto Arroyo Tamujoso	21-35-21	Profunda	1
11	32+425	32+502	77	Viaducto Garganta de Barbacena	21-35-21	Profunda	1
12	34+087	34+253	166	Viaducto Arroyo de la Tejada	21- 30x4 -25	Profunda	1
13	39+858	39+920	62	Viaducto Arroyo del Cahozo	17 - 28 -17	Profunda	1
14	50+010	50+150	140	Viaducto Arroyo Fuente Santa II	35x4	Profunda	1
15	50+520	50+590	70	Viaducto Arroyo Giraldo	20 - 30 -20	Profunda	1
16	51+528	51+598	70	Viaducto 1	20 - 30 -20	Profunda	1
17	57+784	57+955	171	Pergola sobre ffcc Sevilla - Huelva	Pérgola	Profunda	
18	59+148	58+210	62	Viaducto Arroyo Bayas	17 - 28 - 17	Profunda	1
19	60+859	60+921	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda	1
20	63+749	63+819	70	Viaducto Arroyo Arzobispo	20 - 30 -20	Profunda	1
21	69+791	70+850	1059	Viaducto Rio Tinto	41 - 55x18 - 28	Profunda	3
22	75+379	75+679	300	Viaducto Arroyo Candon	28 - 40x6 - 32	Profunda	2
23	77+531	77+593	62	Arroyo del Valcarejo	17 - 28 - 17	Profunda	8
24	80+645	80+715	70	Arroyo de Canillas	20 - 30 - 20	Profunda	1
25	83+579	83+641	62	Viaducto 2	17 - 28 - 17	Profunda	1
26	83+719	83+781	62	Viaducto 3	17 - 28 - 17	Profunda	1
27	87+695	87+845	150	Ribera de Nicoba	20 - 30 - 35 - 40 - 25	Profunda	2
28	92+420	92+625	205	Pergola	Pérgola	Profunda	

FALSO TUNEL

N°	P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Observaciones
29	16+220	16+380	160	Bóveda	Mioceno Formación Margas Azules

1.6.3. Alternativa 1.2

VIADUCTOS

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
1	2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda	2
2	4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda	3
3	5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40-35-45x2-55x7-45x2-28	Profunda	3
4	12+582	12+652	70	Viaducto Arroyo del Judio	20 - 30 -20	Profunda	1
5	12+700	12+880	180	Viaducto Autovia SE-40	20- 35x4 - 20	Profunda	1
6	19+837	19+907	70	Viaducto Arroyo Valdegallinas	20 - 30 -20	Profunda	1
7	22+973	23+083	110	Viaducto Arroyo Valdárrago	20-35-35-20	Profunda	1
8	23+720	24+770	1050	Viaducto Río Guadiamar	35 - 54x4 - 65 - 54x13 - 32	Profunda	4
9	31+417	31+487	70	Viaducto Arroyo Santa María	20 - 30 -20	Profunda	1
10	32+007	32+084	77	Viaducto Arroyo Tamujoso	21-35-21	Profunda	1
11	32+425	32+502	77	Viaducto Garganta de Barbacena	21-35-21	Profunda	1
12	34+087	34+253	166	Viaducto Arroyo de la Tejada	21- 30x4 -25	Profunda	1
13	39+878	39+898	62	Viaducto Arroyo del Cahozo	17 - 28 -17	Profunda	1
14	50+940	51+050	110	Viaducto Arroyo Giraldo	20 - 35 -35 - 20	Profunda	1
15	51+500	51+650	150	Viaducto Arroyo del Juncal	18 - 30x3 - 25 - 17	Profunda	1
16	54+120	54+220	100	Viaducto Arroyo Tortillo	30 - 40 - 30	Profunda	2
17	56+510	56+638	128	Viaducto Carretera A-493	23 - 35 - 35	Profunda	1
18	58+734	58+996	262	Pérgola FFCC Sevilla-Huelva/Arroyo Bayas	Pérgola	Profunda	
19	60+763	60+825	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda	1
20	63+653	63+723	70	Viaducto Arroyo Arzobispo	20 - 30 -20	Profunda	1
21	69+695	70+754	1059	Viaducto Rio Tinto	41 - 55x18 - 28	Profunda	3
22	75+284	75+584	300	Viaducto Arroyo Candon	28 - 40x6 - 32	Profunda	2
23	77+435	77+497	62	Arroyo de Valcarejo	17 - 28 - 17	Profunda	8
24	80+549	80+619	70	Arroyo de canillas	20 - 30 - 20	Profunda	1
25	83+483	83+545	62	Puente	17 - 28 - 17	Profunda	1
26	83+623	83+685	62	Puente	17 - 28 - 17	Profunda	1
27	87+600	87+750	150	Ribera de Nicoba	20 - 30 - 35 - 40 - 25	Profunda	2
28	92+323	92+528	205	Pergola	Pérgola	Profunda	

FALSO TUNEL

N°	P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Observaciones
29	16+220	16+380	160	Bóveda	Mioceno Formación Margas Azules

1.6.4. Alternativa 2.1

VIADUCTOS

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
1	2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda	2
2	4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda	3
3	5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40-35-45x2-55x7-45x2-28	Profunda	3
4	12+365	12+475	110	Viaducto Arroyo del Judio	20 - 35 - 35 -20	Profunda	1
5	17+570	17+800	230	Viaducto Arroyo De la Coriana. OK	25-40-45-45-40-35	Profunda	2
6	23+072	24+270	1198	Viaducto Rio Guadimar	26 -45 -55x4 -50x3 -55x13 -42	Profunda	3
7	25+440	25+510	70	Viaducto Arroyo Acebuchal	20 - 30 - 20	Profunda	7
8	25+920	26+330	410	Viaducto Balsa	40 - 55x6 - 40	Profunda	9
9	27+850	27+970	120	Viaducto Arroyo de la Tejada	25 - 35 -35 - 25	Profunda	1
10	37+815	37+925	110	Ferrocarril	40 - 40 - 30	Profunda	2
11	41+215	41+545	330	Viaducto Arroyo Alcarayon	20 - 35x4 - 40x2 -35x2 - 20	Profunda	2
12	48+230	48+310	80	Pergola FFCC	Pérgola	Profunda	
13	49+210	49+310	100	Viaducto Arroyo de la Fuente	20 - 30 - 30 -20	Profunda	1
14	56+838	56+991	153	Pergola FFCC Sevilla - Huelva	Pérgola	Profunda	
15	58+198	58+260	62	Viaducto Arroyo Bayas	17 - 28 - 17	Profunda	1
16	59+911	59+973	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda	1
17	61+760	62+210	450	Pérgola sobre FFCC Sevilla Huelva y CTRA A-472	Pérgola	Profunda	1
18	63+380	63+590	210	Viaducto Arroyo del Arzobispo	25 - 40x4 - 25	Superficial	2
19	64+690	65+250	560	Viaducto Rio Tinto	45 - 55x8 - 45 - 30	Superficial	3
20	66+988	67+163	175	Viaducto Arroyo de Lavapies	20-35-30-35-35-20	Superficial	1
21	67+858	67+920	62	Viaducto Arroyo de la Adelfa	17 - 28 - 17	Superficial	1
22	73+424	73+724	300	Viaducto Arroyo Candón	25 - 40x6 -35	Superficial	2
23	74+043	74+253	210	Viaducto Arrollo Bajondillo	25 - 40x4 - 25	Superficial	2
24	75+935	76+055	120	Viaducto Arroyo del Valcarejo	25 - 35 - 35 -25	Superficial	1
25	79+491	79+631	140	Viaducto Arroyo Canillas	20 - 35 - 35 - 30 - 20	Superficial	1
26	83+732	83+794	62	Viaducto Arroyo de los Prados	17 - 28 - 17	Profunda	1

N _o	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
27	86+707	86+832	125	Viaducto Autovia A-49	30 - 30 -35 -30	Profunda	1
28	87+242	87+312	70	Viaducto sobre carretera N-431	20 - 30 - 20	Profunda	1
29	87+945	88+888	943	Viaducto sobre H-31 y ffcc Huelva-Zafra	28 - 40X3 - 45X7 - 40x12	Profunda	2
30	90+340	90+780	440	Pérgola sobre Ctra. A-5000 y ffcc Huelva-Zafra	Pérgola	Profunda	
31	93+565	93+770	205	Pérgola sobre ffcc	Pérgola	Profunda	

FALSO TUNELE

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Observaciones
32	14+880	15+060	180	Falso túnel 2	Mioceno Margas marrones y arenas
33	22+580	22+780	200	Falso túnel 3	Mioceno Formación Margas azules
34	29+420	29+690	270	Falso túnel 4	Mioceno Formación Margas azules
35	35+830	36+160	330	Falso túnel 5	Mioceno Limos arenosos calcáreos
36	45+200	45+450	250	Falso túnel 6	Mioceno Limos calcáreos

1.6.5. Alternativa 2.2

VIADUCTO

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
1	2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda	2
2	4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda	3
3	5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40-35-45x2-55x7-45x2-28	Profunda	3
4	12+365	12+475	110	Viaducto Arroyo del Judio	20 - 35 - 35 -20	Profunda	1
5	17+570	17+800	230	Viaducto Arroyo De la Coriana	25-40-45-45-40-35	Profunda	2
6	23+072	24+270	1198	Viaducto Rio Guadimar	26 -45 -55x4 -50x3 -55x13 -42	Profunda	3
7	25+450	25+520	70	Viaducto Arroyo Acebuchal	20 - 30 - 20	Profunda	7
8	25+920	26+330	410	Viaducto Balsa	40 - 55x6 - 40	Profunda	9
9	27+850	27+970	120	Viaducto Arroyo de la Tejada	25 - 35 -35 - 25	Profunda	1
10	37+815	37+925	110	Ferrocarril	40 - 40 - 30 Esviado	Profunda	2
11	41+215	41+545	330	Viaducto Arroyo Alcarayon	20 - 35x4 - 40x2 -35x2 - 20	Profunda	2
12	47+908	47+970	62	Viaducto Ferrocarril 17 - 28 -17 Esviado		Profunda	1
13	48+150	48+270	120	Viaducto Carretera-Fuente Santa I	15 - 30x3 - 15	Profunda	1
14	48+560	48+810	250	Viaducto Fuente Santa I (A)	25 - 40x5 - 25	Profunda	2
15	49+264	49+326	62	Viaducto Fuente Santa I (B)	17 - 28 - 17	Profunda	1
16	50+317	50+429	112	Arroyo de los Morantes	21 - 35 - 35 - 21	Profunda	1
17	50+877	51+027	150	Viaducto Fuente Santa II	15 - 30x4 -15	Profunda	1
18	53+497	53+597	100	Viaducto Arroyo Río Tortillo	30 - 40 - 30	Profunda	2
19	55+887	56+015	128	Viaducto A-493	23 - 35 - 35 - 35 (SEMI Esviado)	Profunda	1
20	58+115	58+377	262	Pergola FC Sevilla - Huelva - Arroyo Bayas	Pérgola	Profunda	
21	60+140	60+202	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda	1
22	62+000	62+450	450	Pérgola sobre FFCC Sevilla Huelva y CTRA A-472 Pérgola		Profunda	
23	63+606	63+816	210	Viaducto Arroyo del Arzobispo	25 - 40x4 - 25	Superficial	2
24	64+916	65+476	560	Viaducto Rio Tinto	45 - 55x8 - 45 - 30	Superficial	3
25	67+218	67+393	175	Viaducto Arroyo de Lavapies	20 - 35x4 -20	Superficial	1
26	68+083	68+145	62	Viaducto Arroyo de la Adelfa	17 - 28 - 17	Superficial	1

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
27	73+656	73+956	300	Viaducto Arroyo Candón	25 - 40x6 -35	Superficial	2
28	74+275	74+485	210	Viaducto Arrollo Bajondillo	25 - 40x4 - 25	Superficial	2
29	76+166	76+286	120	Viaducto Arroyo del Valcarejo	25 - 35 - 35 -25	Superficial	1
30	79+723	79+863	140	Viaducto Arroyo Canillas	20 - 35 - 35 - 30 - 20 Esviado	Superficial	1
31	83+978	84+008	30	Viaducto Arroyo de los Prados	17 - 28 - 17	Profunda	1
32	86+963	87+064	125	Viaducto Autovia A-49	30 - 30 -35 -30	Profunda	1
33	87+474	87+544	70	Viaducto sobre carretera N-431	20 - 30 - 20	Profunda	1
34	88+183	89+126	943	Viaducto sobre H-31 y ffcc Huelva-Zafra	28 - 40X3 - 45X7 - 40x12 Esviaje parcial	Profunda	2
35	90+560	91+000	440	Pérgola sobre Ctra. A-5000 y ffcc Huelva-Zafra	Pérgola	Profunda	
36	93+796	94+001	205	Pérgola sobre ffcc	Pérgola	Profunda	

FALSO TUNEL

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Observaciones
37	14+880	15+060	180	Falso túnel 2	Mioceno Margas marrones y arenas
38	22+580	22+780	200	Falso túnel 3	Mioceno Formación Margas azules
39	29+420	29+690	270	Falso túnel 4	Mioceno Formación Margas azules
40	35+830	36+160	330	Falso túnel 5	Mioceno Limos arenosos calcáreos
41	45+200	45+450	250	Falso túnel 6	Mioceno Limos calcáreos

1.6.6. Alternativa 3.1

VIADUCTOS

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
1	2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda	2
2	4+023	5+093	1070	Viaducto del Guadalquivir	45 - 55x18 - 35	Profunda	3
3	5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40-35-45x2-55x7-45x2-28	Profunda	3
4	12+582	12+652	70	Viaducto Arroyo del Judio	20 - 30 -20	Profunda	1
5	12+700	12+880	180	Viaducto Autovia SE-40	20- 35x4 - 20	Profunda	1
6	19+837	19+907	70	Viaducto Arroyo Valdegallinas	20 - 30 -20	Profunda	1
7	22+973	23+083	110	Viaducto Arroyo Valdárrago	20-35-35-20	Profunda	1
8	23+720	24+770	1050	Viaducto Río Guadiamar	35 - 54x4 - 65 - 54x13 - 32	Profunda	4
9	31+417	31+487	70	Viaducto Arroyo Santa María	20 - 30 -20	Profunda	1
10	32+007	32+084	77	Viaducto Arroyo Tamujoso	21-35-21	Profunda	1
11	32+425	32+502	77	Viaducto Garganta de Barbacena	21-35-21	Profunda	1
12	34+087	34+253	166	Viaducto Arroyo de la Tejada	21- 30x4 -25	Profunda	1
13	39+858	39+920	62	Viaducto Arroyo del Cahozo	17 - 28 -17	Profunda	1
14	50+010	50+150	140	Viaducto Arroyo Fuente Santa II	35x4	Profunda	1
15	50+520	50+590	70	Viaducto Arroyo Giraldo	20 - 30 -20	Profunda	1
16	51+528	51+598	70	Viaducto 1	20 - 30 -20	Profunda	1
17	57+784	57+955	171	Pergola sobre ffcc Sevilla - Huelva	Pérgola	Profunda	
18	59+148	58+210	62	Viaducto Arroyo Bayas	17 - 28 - 17	Profunda	1
19	60+859	60+921	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda	1
20	62+720	63+170	450	Pérgola fobre FFCC Sevilla Huelva y CTRA A-472	Pérgola	Profunda	
21	64+325	64+535	210	Viaducto Arroyo del Arzobispo 25 - 40x4 - 25		Superficial	2
22	65+635	66+195	560	Viaducto Rio Tinto 45 - 55x8 - 45 - 30		Superficial	3
23	67+937	68+112	175	Viaducto Arroyo de Lavapies	20 - 35-30-35-35 -20	Superficial	1
24	68+802	68+864	62	Viaducto Arroyo de la Adelfa	17 - 28 - 17	Superficial	1
25	74+375	74+675	300	Viaducto Arroyo Candón	25 - 40x6 -35	Superficial	2
26	74+994	75+204	210	Viaducto Arrollo Bajondillo	25 - 40x4 - 25	Superficial	2

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
27	76+885	77+005	120	Viaducto Arroyo del Valcarejo	25 - 35 - 35 -25	Superficial	1
28	80+442	80+582	140	Viaducto Arroyo Canillas	20 - 35 - 35 - 30 - 20 Esviado	Superficial	1
29	84+683	84+745	62	Viaducto Arroyo de los Prados	Viaducto Arroyo de los Prados 17 - 28 - 17		1
30	87+658	87+783	125	Viaducto Autovia A-49 30 - 30 - 35 - 30		Profunda	1
31	88+193	88+263	70	Viaducto sobre carretera N-431	20 - 30 - 20	Profunda	1
32	88+900	89+843	943	Viaducto sobre H-31 y ffcc Huelva-Zafra 28 - 40X3 - 45X7 - 40x12 Esviaje parcial		Profunda	2
33	91+290	91+700	410	Pérgola sobre Ctra. A-5000 y ffcc Huelva-Zafra Pérgola		Profunda	
34	94+515	94+720	205	Pérgola sobre ffcc	Pérgola	Profunda	

FALSO TUNEL

N°	P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Observaciones
35	16+220	16+380	160	Bóveda	Mioceno Formación Margas Azules

1.6.7. Alternativa 3.2

VIADUCTOS

/IADUCTOS							
N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
1	2+925	3+222	297	Viaducto Tapón del Guadalquivir	28.5 - 40x6 - 28.5	Profunda	2
2	4+023	5+093	3 1070 Viaducto del Guadalquivir 45 - 55x18 - 35		45 - 55x18 - 35	Profunda	3
3	5+661	7+145	1484	Viaducto de Camas	31-55x3-50x2-55x7-30-50-55-40-35-45x2-55x7-45x2-28	Profunda	3
4	12+582	12+652	70	Viaducto Arroyo del Judio	20 - 30 -20	Profunda	1
5	12+700	12+880	180	Viaducto Autovia SE-40	20- 35x4 - 20	Profunda	1
6	19+837	19+907	70	Viaducto Arroyo Valdegallinas	20 - 30 -20	Profunda	1
7	22+973	23+083	110	Viaducto Arroyo Valdárrago	20-35-35-20	Profunda	1
8	23+720	24+770	1050	Viaducto Río Guadiamar	35 - 54x4 - 65 - 54x13 - 32	Profunda	4
9	31+417	31+487	70	Viaducto Arroyo Santa María	20 - 30 -20	Profunda	1
10	32+007	32+084	77	Viaducto Arroyo Tamujoso	21-35-21	Profunda	1
11	32+425	32+502	77	Viaducto Garganta de Barbacena	21-35-21	Profunda	1
12	34+087	34+253	166	Viaducto Arroyo de la Tejada	21- 30x4 -25	Profunda	1
13	39+858	39+920	62	Viaducto Arroyo del Cahozo	17 - 28 -17	Profunda	1
14	50+940	51+050	110	Viaducto Arroyo Giraldo	20 - 35 -35 - 20	Profunda	1
15	51+500	51+650	150	Viaducto Arroyo del Juncal	18 - 30x3 - 25 - 17	Profunda	1
16	54+120	54+220	100	Viaducto Arroyo Tortillo	30 - 40 - 30	Profunda	2
17	56+510	56+638	128	Viaducto Carretera A-493	23 - 35 - 35 (SEMI Esviado)	Profunda	1
18	58+660	59+110	450	Pérgola FFCC Sevilla-Huelva/Arroyo Bayas	Pérgola	Profunda	
19	60+763	60+825	62	Viaducto Sapo Hondo	17 - 28 - 17	Profunda	1
20	62+620	63+070	450	Pérgola sobre FFCC Sevilla Huelva y CTRA A-472	Pérgola	Profunda	
21	64+230	64+440	210	Viaducto Arroyo del Arzobispo	25 - 40x4 - 25	Superficial	2
22	65+540	66+100	560	Viaducto Rio Tinto	45 - 55x8 - 45 - 30	Superficial	3
23	67+842	68+017	175	Viaducto Arroyo de Lavapies	20 - 35x4 -20	Superficial	1
24	68+707	68+769	62	Viaducto Arroyo de la Adelfa	17 - 28 - 17	Superficial	1
25	74+280	74+580	300	Viaducto Arroyo Candón	25 - 40x6 -35	Superficial	2
26	74+898	75+108	210	Viaducto Arrollo Bajondillo	25 - 40x4 - 25	Superficial	2
	<u> </u>	L				1	<u> </u>

N°	P.K. inicio	P.K. final	Longitud (m)	Nombre	Luces	Cimentación	Sección
27	76+790	76+910	120	Viaducto Arroyo del Valcarejo	25 - 35 - 35 -25	Superficial	1
28	80+346	80+486	140	Viaducto Arroyo Canillas	20 - 35 - 35 - 30 - 20 Esviado	Superficial	1
29	84+587	84+649	62	Viaducto Arroyo de los Prados 17 - 28 - 17		Profunda	1
30	87+562	87+687	125	Viaducto Autovia A-49	30 - 30 -35 -30	Profunda	1
31	88+097	88+167	70	Viaducto sobre carretera N-431	20 - 30 - 20	Profunda	1
32	88+800	89+743	943	Viaducto sobre H-31 y ffcc Huelva-Zafra	28 - 40X3 - 45X7 - 40x12 Esviaje parcial	Profunda	2
33	91+200	91+610	410	Pérgola sobre Ctra. A-5000 y ffcc Huelva-Zafra	Pérgola	Profunda	
34	94+420	94+625	205	Pérgola sobre ffcc	Pérgola	Profunda	

FALSO TUNEL

N°	P.K. inicio	P.K. final	Longitud (m)	Sección Tipo	Observaciones
35	16+220	16+380	160	Bóveda	Mioceno Formación Margas Azules

2. Túneles

2.1. Introducción y objeto

El presente Anejo, incluido dentro del ESTUDIO INFORMATIVO DE LA LÍNEA DE ALTA VELOCIDAD SEVILLA-HUELVA, tiene por objeto analizar los túneles y estructuras definidos en las distintas alternativas que se describirán a continuación:

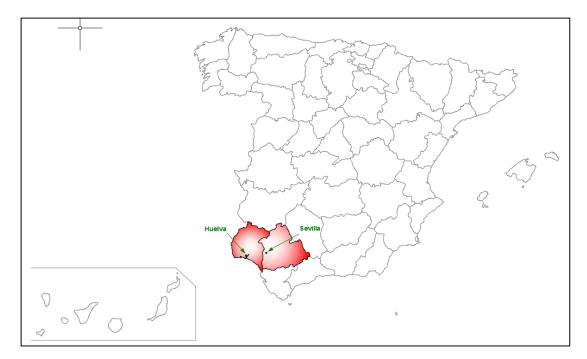


Figura 1. Situación. Fuente: Ineco 2018

La normativa específica de aplicación para la realización del presente anejo es la siguiente:

- Norma ADIF Plataforma Túneles, NAP 2-3-1.0. Edición Julio 2015.
- Reglamento (UE) nº 1303/2014 de la Comisión del 18 de noviembre de 2014, Especificación Técnica de Interoperabilidad relativa a la "Seguridad en los túneles ferroviarios" del sistema ferroviario de la Unión Europea.
- Ficha UIC 779-11 en fase de prediseño.
- Recomendaciones para dimensionar túneles ferroviarios por efectos aerodinámicos de presión sobre viajeros, Ministerio de Fomento.

Además de ello, se ha tenido en cuenta la geología del túnel, cuyo perfil se incluyen en el Apéndice 4 del Anejo 03 Geología y Geotecnia.

2.2. Descripción de la actuación

El presente Estudio Informativo presenta seis posibles alternativas de trazado:

- Alternativa 1-1 y 1-2
- Alternativa 2-1 y 2-2
- Alternativa 3-1 y 3-2

La Alternativa 2 es la única en cuya traza se ha proyectado la ejecución de un túnel, denominado túnel de La Muela, por ser el nombre del cerro que atraviesa. Dicha alternativa presenta dos variantes, que no afectan a la planta y alzado del túnel. En la siguiente tabla se adjunta la información de cada una de ellas.

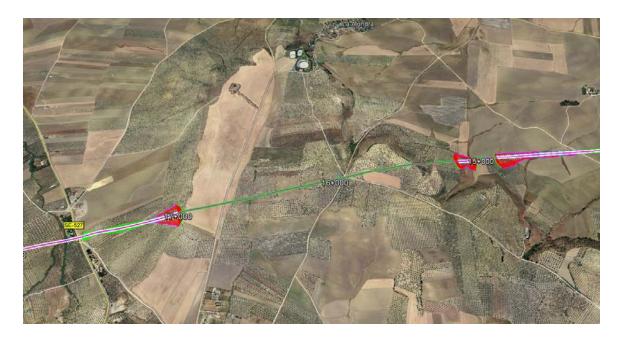


Imagen 1. Ubicación del túnel de La Muela. Fuente: Google Earth

	Túnel	PK Inicio	PK Final	Longitud (m)
Alternativa 2.1	La Muela	15+160	17+010	1.850
Alternativa 2.2		13+160	17.010	

Tabla 1. Ubicación del túnel de La Muela

2.2.1. Estructura de la traza

El túnel de La Muela está ubicado entre los PK 15+160 a 17+010, lo que le confiere una longitud de 1850 metros.

El emboquille de entrada se encuentra al Este del Cerro Quemado, y el de salida, al Oeste de Las Alberquillas, atravesando materiales miocenos, predominantemente compuestos por margas, y con una cobertera máxima en torno a los 70 metros sobre clave de túnel. Se trata de un trazado en recta con una pendiente máxima del 15‰.

2.2.2. Recorrido geológico-geotécnico

La geología de la zona por donde discurre el túnel de La Muela está formada por una secuencia estratigráfica que, de base a techo, comienza con la formación de margas azules expansivas, sobre ellas una secuencia de margas marrones, y a techo unos limos arenosos calcáreos de poca entidad. La secuencia margas marrones (Mm) y limos arenosos (La) forman la unidad TI cuyas características se describen en detalle en el anejo de Geología y Geotecnia.

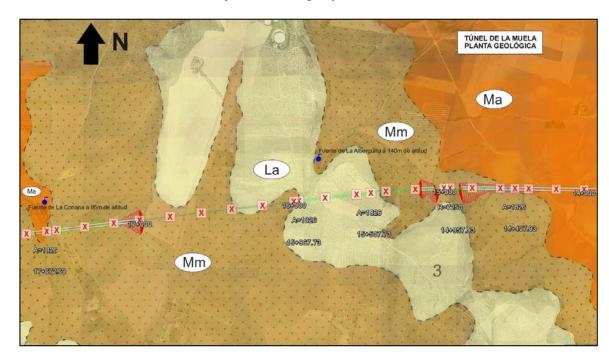


Figura 2. Planta geológica del túnel de La Muela

El túnel de La Muela, incluidos los emboquilles, discurren completamente por la unidad de margas marrones (Mm). Su potencia es variable y presentan un contenido en finos muy elevado (más de un 90%).

Según los datos de los ensayos de laboratorio, se ha obtenido un valor por debajo de 0,5 kp/cm² para presiones de hinchamiento, y valores de hinchamiento libre inferiores al 0,5%, de forma que el material inalterado presentará en general expansividad baja a media.

En condiciones de humedad natural, los materiales se sitúan en general dentro de la zona de materiales de baja expansividad, si se observa la gráfica que correlaciona el índice de desecación y el límite líquido (ver anejo de geología y geotecnia, descripción de la unidad TI. Margas marrones y limos arenosos).

Los contenidos en sulfatos solubles, se sitúan en torno al 0,15%, aunque puntualmente se han encontrado valores elevados, de hasta el 1,4%. De acuerdo con estos datos, puede considerarse que estos materiales serán en general no agresivos, aunque puntualmente pueden presentar un tipo de ataque alto (Qc), de acuerdo con la clasificación de agresividad química de la Instrucción de Hormigón Estructural EHE.

Los materiales serán excavables por medios mecánicos, no siendo necesario el uso de explosivos.

Desde el punto de vista hidrogeológico, los materiales pueden considerarse con una permeabilidad baja. La naturaleza arcillosa de estos materiales hace que se produzcan pocas variaciones estacionales de los niveles freáticos. Pueden presentar acuíferos libres, muy escasamente conectados, a través de juntas y diaclasas.

En general, los niveles freáticos se sitúan en las zonas de contacto entre formaciones. El túnel de La Muela no intercepta ninguno de los límites con las unidades supra e infrayacentes, lo cual hace que la probabilidad de encontrar los acuíferos en las zonas de contacto entre litologías sea baja.

2.3. Sección tipo

2.3.1. Túnel principal

2.3.1.1. Sección libre

La sección libre del túnel debe justificarse partiendo de las condiciones de salud y confort según criterios aerodinámicos, de la configuración de vía doble, y de la velocidad máxima de circulación admisible según la geometría de trazado.

La velocidad máxima admisible para este proyecto es de 350 km/h. Según la ficha "UIC 779-11, Determination of wailway tunnel cross-sectional áreas on the basis of aerodynamic considerations" empleada para esta fase de prediseño, y las "Recomendaciones para dimensionar túneles ferroviarios por efectos aerodinámicos de presión sobre viajeros" del Ministerio de Fomento, la sección mínima para un túnel de vía doble sería de 120 m².

En fases posteriores se realizará un ajuste mayor con herramientas de cálculo más precisas y específicas validadas por la UIC o CEN.

2.3.1.2. Sección geométrica

Para la definición geométrica de la sección tipo se han tomado los siguientes valores:

- Túnel de vía doble en ancho estándar UIC.
- Gálibo uniforme GC.
- Distancia entre ejes de 4,7 m.
- Cota de centro de círculo a 2,8 m sobre la cabeza de carril.
- Nivel de paseo a 55 cm sobre la cota de carril del hilo bajo.
- Acera a ambos lados del túnel, con ancho con ancho de 2,70 m para una sección de 120 m².
- El sistema de drenaje previsto es un sistema unitario de conducción de las aguas de infiltración, escorrentía y vertidos, que se evacúan a un colector central de 50 cm de diámetro, con arquetas de limpieza cada 50 m. Las aguas de infiltración, se conducen a un colector lateral conectados al colector cada 50 m.

Se proyecta una contrabóveda con geometría semicircular debido a las características geotécnicas del terreno a atravesar.

La tipología de la plataforma será la de vía en placa, tal y como se recogen en la orden FOM/3317/2010 "Instrucción sobre las medidas espcíficas para la mejora de la eficiencia en la ejecución de las obras públicas de infraestructuras ferroviarias, carreteras y aeropuertos del Ministerio de Fomento", para túneles de más de 1.500 m, siempre que no existan otras circunstancias que puedan desaconsejar ese tipo de vía. Debido al carácter concatenado del falso túnel existente previo al túnel de La Muela, se considera a efectos de seguridad un solo túnel de 2.130m, empezando por el emboquille de entrada del falso túnel y acabando en el emboquille de salida del túnel de La Muela. Esto implica que deberá existir vía en placa en toda la longitud considerada a efectos de seguridad.

2.4. Procedimiento constructivo

2.4.1. Selección del método constructivo

Se desecha la excavación con tuneladora debido a que, desde el punto de vista económico y en base a la experiencia adquirida, las tuneladoras en zonas no urbanas suelen salir rentables en túneles de longitudes superiores a 3 km.

La excavación por métodos convencional permite que los trabajos sean más versátiles, pudiéndose en caso de necesidad o en las siguientes fases del proyecto, ampliar los frentes de avance mediante la ejecución de galerías de ataque intermedio, ya que en este estudio se proyectan galerías de emergencia que podrían utilizarse para aumentar los frentes de excavación, si así fuera necesario durante la fase de obra.

Dentro de los métodos convencionales, se adopta la filosofía constructiva del Nuevo Método Austriaco (N.A.T.M.), que aplica sostenimientos basados en el empleo de hormigón proyectado, bulones, mallazo y cerchas. Con este método se permite una cierta deformación del terreno hasta el momento en que se coloca el sostenimiento, aprovechando así la colaboración del terreno en la estabilidad de la excavación.

Se descarta el método Belga ya que está más indicado para secciones de túneles con un ancho máximo aproximado de 11 m, o en entornos urbanos que requieran limitar los movimientos en superficie.

El terreno a excavar está formado por unas margas que, en base a la información disponible, no presentan un elevado grado de alteración, pero según los datos de laboratorio en muestras ensayadas del entorno, pueden ser evolutivas. En fases posteriores, con la ejecución de una campaña geotécnica de detalle, podrá evaluarse el grado de meteorización de la roca. Mientras tanto, en esta fase de proyecto, y siempre del lado de la seguridad, se propone el uso de sostenimientos más pesados y pases cortos que limiten el tiempo de exposición de las margas de cara a su alteración.

Adicionalmente, podrán emplearse tratamientos complementarios que aumenten la estabilidad de la sección, como el empleo de machón central o gunita sobreacelerada, entre otros, y que serán descritos más adelante.

2.5. Secciones tipo de sostenimiento

Para realizar una estimación previa del sostenimiento a utilizar en las excavaciones a realizar en el túnel se ha utilizado el índice RMR de Bieniawski y el índice Q de Barton, los cuales se ha correlacionado mediante la expresión:

$$Q = e^{\frac{RMR - 44}{9}}$$

El sostenimiento a utilizar se puede estimar mediante el **ábaco de Barton**, que exige el conocimiento del cociente entre la *dimensión crítica de la excavación y el ESR*.

El **Índice Q de Barton** fue desarrollado en Noruega en 1974 por Barton, Lien y Lunde, del Instituto Geotécnico Noruego. Se basó su desarrollo en el análisis de cientos de casos de túneles construidos principalmente en Escandinavia. Actualmente se denomina Nuevo Método Noruego de túneles al diseño de las excavaciones basándose directamente en los trabajos de Barton.

La Clasificación de Barton asigna a cada terreno un índice de calidad Q, tanto mayor cuanto mejor es la calidad de la roca. Su variación no es lineal como la del

RMR, sino exponencial, y oscila entre Q=0.001 para terrenos muy malos y Q=1000 para terrenos muy buenos.

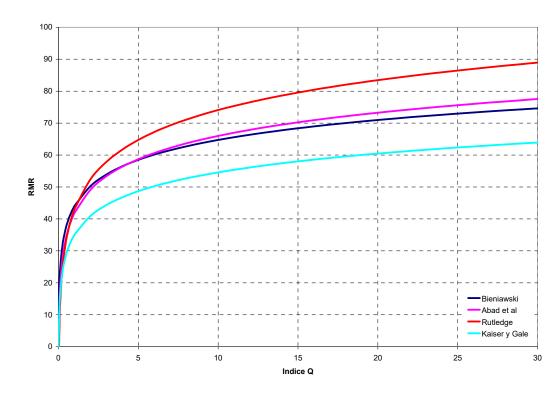
El valor de Q se obtiene de la siguiente expresión:

$$Q = \frac{RQD}{J_n} \cdot \frac{J_r}{J_a} \cdot \frac{J_w}{SRF}$$

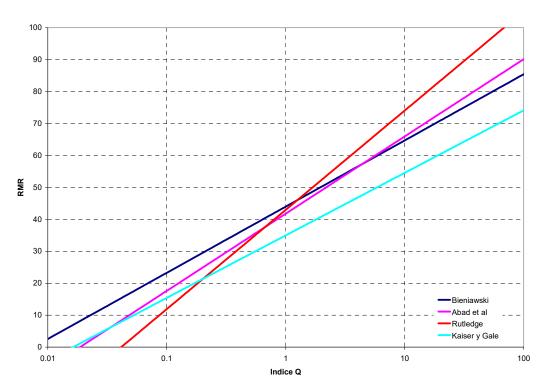
donde cada parámetro representa lo siguiente:

RQD: es el índice Rock Quality Designation, es decir, la relación en tanto por ciento entre la suma de longitudes de testigo de un sondeo mayores de 10 cm y la longitud total. Barton indica que basta tomar el RQD en incrementos de 5 en 5, y que como mínimo tomar RQD=10.

- J_n: varía entre 0.5 y 20, y depende del número de familias de juntas que hay en el macizo.
- J_r : varía entre 1 y 4, y depende de la rugosidad de las juntas.
- J_a: varía entre 0.75 y 20, y depende del grado de alteración de las paredes de las juntas de la roca.
- J_w: varía entre 0.05 y 1, dependiendo de la presencia de agua en el túnel.


SRF: son las iniciales de Stress Reduction Factor, y depende del estado tensional de la roca que atraviesa el túnel.

Para la obtención de cada uno de los cinco últimos parámetros, Barton aporta unas tablas donde se obtienen los valores correspondientes en función de descripciones generales del macizo rocoso.


Existen también diversas correlaciones para establecer una estimación entre el índice Q y el RMR, entre estas correlaciones hay que destacar:

- RMR = 9,0 · Ln Q + 44(Según Bieniawski, 1976)
- RMR = 13,5 · Ln Q + 43(Según Rutledge, 1978)
- RMR = 4,5 · Ln Q + 55,2(Según Moreno, 1980)
- RMR = 10,5 · Ln Q + 41,8(Según Abad et al, 1983)

- RMR = 8,5 · Ln Q + 35..... (Según Kaiser y Gale, 1985)
- RMR = 15 · log Q + 50.....(Según Barton, 1995)

Correlaciones RMR-Q

Correlaciones RMR-Q en escala logarítmica

De entre estas correlaciones se adopta la de Bieniawski para determinar el índice Q, quedando la siguiente expresión empírica:

$$Q = e^{\frac{RMR - 4}{9}}$$

2.5.1. Predimensionamiento según el índice Q de Barton

A partir de este índice se realizará un predimensionamiento de los Sostenimientos. La clasificación de Barton está más desarrollada que la del RMR de Bieniawski y permite obtener un sostenimiento más afinado. Para su aplicación es preciso además obtener el parámetro ESR (Excavation Support Ratio). El ESR es un factor que pondera la importancia de la obra de acuerdo a la siguiente tabla:

TIPO	DESCRIPCIÓN	ESR
А	Minas abiertas temporalmente	3 - 5
В	Pozos verticales	2,5 - 2
С	Minas abiertas permanentemente. Túneles hidroeléctricos Túneles piloto y galerías de avance para grandes excavaciones	1,6
D	Cavernas de almacenamiento Plantas de tratamiento de aguas Túneles pequeños de carretera y ferrocarril	1,3
E	Centrales eléctricas subterráneas Túneles grandes de carretera y ferrocarril Cavernas de defensa civil Boquillas e intersecciones	1
F	Centrales nucleares subterráneas Estaciones de ferrocarril Pabellones deportivos y de servicios	0,8

Con el Índice Q y la relación Ancho de excavación / ESR, se puede determinar al sostenimiento propuesto por Barton en el Abaco.

En el caso objeto de este estudio, se ha adoptado un ESR de 1,0 al tratarse de túneles ferroviarios de gran sección.

De acuerdo con la metodología descrita, se ha estimado el sostenimiento a aplicar adoptando un ancho de excavación máximo de 15 para el túnel de doble vía, lo que nos da un cociente dimensión crítica de excavación/ESR igual a 15.

A continuación, se presenta la estimación previa del sostenimiento a aplicar en los tipos de terreno que está previsto sean atravesados por los túneles.

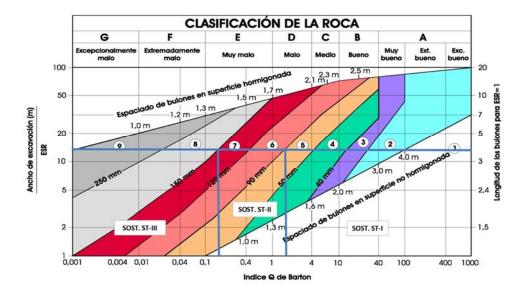


Gráfico de Barton para el Túnel de Vía Doble

Categorías de sostenimiento:

- 1. Sin sostenimiento
- 2. Bulonado puntual
- 3. Bulonado sistemático
- 4. Bulonado sistemático con hormigón proyectado
- 5. Hormigón proyectado con fibras, 5-9 cm, y bulonado
- 6. Hormigón proyectado con fibras, 9-12 cm y bulonado
- Hormigón proyectado con fibras, 12-15 cm y bulonado
- Hormigón proyectado con fibras, >15 cm con bulonado y cerchas
- 9. Revestimiento de hormigón

Por lo tanto en función de los resultado obtenidos en el ábaco de Barton se establecen tres secciones tipo de sostenimiento (para las zonas singulares como emboquilles, paso de falla, o zonas de escasa cobertera, se ha proyectado una cuarta sección de sostenimiento ST-IV independiente).

En la siguiente tabla, a modo de resumen, pueden observarse los espesores de hormigón proyectado y otros elementos de sostenimientos necesarios según las recomendaciones de Barton.

SECCION TIPO	CALIDAD GEOTÉCNICA	RANGO APROXIMADO Q	RANGO APROXIMADO RMR	ESPESOR GUNITA	REFUERZO	CERCHA	BULONES
ST-I	FAVORABLE	Q>2	RMR > 50	9 cm	FIBRAS DE ACERO	NO	LONG. BULON 4 m espaciado 1,8 m
ST-II	MEDIA	2 > Q > 0,2	50 > RMR > 30	15 cm	FIBRAS DE ACERO	NO	LONG. BULON 4 m espaciado 1,35 m
ST-III	DESFAVORABLE Q < 0,2		RMR < 30	25 cm	FIBRAS DE ACERO	SI	LONG. BULON 4 m espaciado 1,0 m
ST-IV	EMBOQUILLES Y ZONAS SINGULARES						

Secciones tipo de sostenimientos según recomendaciones de Barton

2.5.2. Predimensionamiento según el índice RMR de Bieniawski

Otra forma para la caracterización del macizo es utilizar la clasificación geomecánica de Bieniawski (1989), calculándose el índice RMR (Rock Mass Rating).

Las clasificaciones geomecánicas son un método de ingeniería geológica que permite evaluar el comportamiento geomecánico del macizo rocoso, este comportamiento incluye la estimación de los parámetros geotécnicos de diseño y en el tipo de sostenimiento en el túnel.

La clasificación de Bieniawski de 1989 permite valorar la calidad de un determinado macizo atendiendo a una serie de criterios como pueden ser la resistencia a la compresión simple, las condiciones de diaclasado, efecto del agua y la posición relativa de la excavación respecto a las diaclasas.

Para tener en cuenta la incidencia de estos factores, se definen una serie de parámetros, asignándoles unas determinadas valoraciones, cuya suma en cada caso nos da el RMR.

Los cinco parámetros que definen la calidad global del macizo son los siguientes:

Resistencia de la roca 0 –15 %

matriz:

RQD (%): 3 – 20 %

Espaciado de las juntas: 5 –20 %

Estado de las juntas: 0 - 30 %

Presencia de agua: 0 - 15 %

RANGO VARIACIÓN RMR: 8 – 100 %

Adicionalmente el sistema de clasificación considera un factor de minoración en función de la disposición relativa entre las discontinuidades y el eje del túnel, distinguiendo entre cinco posibles estados, que discurren entre muy favorable y muy desfavorable, con una constante de corrección que varía entre 0 y –12. Esta penalización del índice obtenido, así como la presencia o no de agua, sólo deben considerarse cuando se pretenda llevar a cabo una aplicación del índice RMR muy concreta, como por ejemplo la asignación empírica de sostenimientos mediante el cuadro propuesto por Bieniawski.

	Parám	etro		F	Rango de valore	s			
	Resistencia de la roca	Índice de carga puntual	> 10 MPa	4-10 MPa	2-4 MPa	1-2 MPa			
1		R. compresión simple	> 250 MPa	100-250 MPa	50-100 MPa	25-50 MPa	5-25 MPa	1-5 MPa	< 1 MPa
	Valor	ación	15	12	7	4	2	1	0
2		QD	90-100%	75-90%	50-75%	75% 25-50%		<25%	
		ración	20	17	13	8		3	
3	Espaciado de las discontinuidades		> 2m	0,6-2 m	0,2-0,6 m	6-20 cm		< 6 cm	

	Parám	etro		F	Rango de valore	s	
	Valoración		20	15	10	8	5
4	Estado de les discontinuidades		Superficies muy rugosas. Sin separación. Bordes sanos y duros	Superficies ligeramente rugosas. Separación < 1mm Bordes ligeramente alterados	Superficies ligeramente rugosas. Separación < 1mm Bordes muy alterados	Superficies estriadas o con rellenos < 5mm o abiertas 1-5 mm. Continuas	Rellenos blandos > 5 mm ó apertura > 5 mm. Continuas
	Valor	ación	30	25	20	10	0
		Caudal por 10 m de túnel	Nulo	< 10 litros/min	10-25 litros/min	25-125 litros/min	> 125 litros/min
5	Agua subterránea	Relación: Presión agua / Presión principal mayor	0	0-0,1	0,1-0,2	0,2-0,5	> 0,5
		Estado General	Completamente seco	Ligeramente húmedo	Húmedo	Goteando	Fluyendo
	Valoración		15	10	7	4	0

Cuadro de sostenimientos de Bieniawski

De acuerdo con los criterios de Bieniawski y en función del RMR obtenido, los macizos se clasifican en las cinco categorías (Rocas de Calidad I a VI), los cuales se detallan a continuación:

RMR	TIPO	CALIDAD
81 – 100	ı	Muy bueno
61 – 80	II	Bueno
41 – 60	III	Medio
21 – 40	IV	Malo
< 20	V	Muy malo

Para la valoración de los diferentes parámetros que conforman el índice RMR, se emplean como fuentes de información principales las estaciones geomecánicas efectuadas, así como los sondeos y ensayos de laboratorio disponibles.

Para túneles de sección en herradura con anchura máxima de 10 m y una tensión vertical máxima de 250 kg/cm² Bieniawski propone los siguientes sostenimientos en función de la calidad de la roca estimada según el RMR (Rock Mass Rating).

			SOSTEM	NIMIENTO PRIMARIO	
CLASE ROCA	RMR	EXCAVACIÓN	Bulonado (*) (longitudes, túneles de 10 m de luz)	Gunitado	Cerchas
1	100 - 81	A sección completa. Avances de 3 m	Innecesario, s	salvo algún bulón ocasional	
II	80 - 61	Plena sección. Avances de 1-1,5 m	Bulonado local en bóveda, con longitudes de 2-3 m y separación de 2-2,5 m, eventualmente con mallazo	5 cm en bóveda para impermeabilización	No
III	60 - 41	Galería en clave y bataches. Avances de 1,5 a 3 m en la galería	Bulonado sistemático de 3-4 m con separaciones de 1,5 a 2 m en bóveda y hastiales. Mallazo en bóveda	5 a 10 cm en la bóveda y 3 cm en hastiales	No
IV	40 - 21	Galería en la clave y bataches Avances de 1 a 1,5 m en la galería	Bulonado sistemático de 4-5 m con separaciones de 1-1,5 m en bóveda y hastiales, con mallazo	10-15 cm en bóveda y 10 cm en hastiales. Aplicación según avanza la excavación	Entibación ligera ocasional, con separaciones de 1,5 m
V	> 20	Galerías múltiples. Avances de 0,5-1 m en la galería de clave	Bulonado sistemático de 5-6 m, con separaciones de 1-1,5 m en bóveda y hastiales, con mallazo. Bulonado de la solera	15-20 cm en bóveda, 15 cm en hastiales y 5 cm en el frente. Aplicación inmediata después de cada voladura	Cerchas fuertes separadas 0,75 m con blindaje de chapas, y cerradas en solera

^(*) Bulones de 20 mm de diámetro, con resina.

Por lo tanto, atendiendo a los rangos de RMR utilizados previamente en el Predimensionamiento realizado por el ábaco de Barton, los elementos de sostenimiento recomendados por Bieniawski son los siguientes:

SECCION TIPO	CALIDAD GEOTÉCNICA	RANGO APROXIMADO Q	RANGO APROXIMADO RMR	ESPESOR GUNITA	REFUERZO	CERCHA	BULONES
ST-I	FAVORABLE	Q > 2	RMR > 50	5 - 10 cm en bóveda 3 cm en hastiales	Mallazo en bóveda	NO	LONG. BULON 3-4 m espaciado 1,5-2 m
ST-∥	MEDIA	2 > Q > 0,2	50 > RMR > 30	10 - 15 cm en bóveda 10 cm en hastiales	Mallazo	OCASIONAL espaciado 1,5 m	LONG. BULON 4-5 m espaciado 1-1,5 m
ST-III	DESFAVORABLE	Q < 0,2	RMR < 30	15 - 20 cm en bóveda 15 cm en hastiales 5 cm frente excavación	Mallazo	CERCHAS FUERTES espaciado 0,75 m	LONG. BULON 5-6 m espaciado 1-1,5 m
ST-IV	EMBOQUILLES Y ZONAS SINGULARES						

Secciones tipo de sostenimientos según recomendaciones de Bieniawski

2.5.3. Sostenimientos propuestos.

Una vez valoradas las recomendaciones de sostenimientos para los rangos adoptados, se proponen las siguientes secciones tipo. Son muy similares a las obtenidas en el Predimensionamiento de Barton y Bieniawski. La sección tipo ST-IV se ha diseño atendiendo a experiencias en terrenos y situaciones similares.

	SECCIONES TIPO DE SOSTENIMIENTO									
SECCION TIPO	CALIDAD GEOTÉCNICA	RANGO APROXIMADO Q BARTON	RANGO APROXIMADO RMR	LONGITUD DE PASE	ESPESOR GUNITA	FIBRAS DE ACERO	CERCHA	BULONES		
ST-I	FAVORABLE	Q > 2	RMR > 50	3,5 m	10 cm H/MP-30	40 Kg/m³		SWELLEX O SIMILAR 24 T 4 m de longitud en malla 1,75 m x 1,75 m		
ST-∥	MEDIA	2 > Q > 0,2	50 > RMR > 30	1,5 m	18 cm H/MP-30	40 Kg/m³	TH-29 a 1,5 m			
ST-III	DESFAVORABLE	Q < 0,2	RMR < 30	1,0 m	25 cm H/MP-30	40 Kg/m³	HEB-180 a 1,0 m			
07.1/			21.11.4.25	0,5 m	30 cm H/MP-30	40 Kg/m³	HEB-180 a 0,5 m			
ST-IV	EVIBOQUILL	ES Y ZONAS SIN	J ULAKES	Paraguas de micropilotes de refuerzo: Øexc. 150 mm, Øext. tubo 114,3 mm, espesor 10 mm. Longitud 9 m, solape 3 m, espaciado entre tubo 30 cm. Bulones de fibra de vidrio en el frente. Malla 1,75 x 1,75 m, longitud 9, solape 3 m Sellado del frente 10 cm de H/MP-30. Machón central.						

Tabla de sostenimientos propuestos para el Estudio Informativo

2.6. Tratamientos especiales

Una vez definidas las secciones tipo de sostenimiento aplicar, mediante las recomendaciones de Barton y Bieniawski, se logrará estabilizar la excavación en todas las calidades de terreno previstas. No obstante, cabe la posibilidad de que se intercepten zonas en que la calidad geotécnica de los materiales sea tan mala, que puede no ser suficiente con los sostenimientos anteriormente definidos, y sea necesario recurrir a tratamientos de refuerzo complementario, conocido con el nombre genérico de tratamientos especiales.

Los tratamientos especiales se usan de forma puntual, con objeto de atravesar zonas muy concretas de terreno. Se aplicarán, eventualmente, dos tipos, según la misión que tenga encomendada el tratamiento:

- Tratamientos de estabilidad de la bóveda y del frente.
- Tratamientos de impermeabilización.

Con las secciones tipo de sostenimiento que se ha diseñado, junto con los tratamientos especiales, es de esperar que puedan atravesarse las zonas de baja calidad geotécnica sin problemas.

A continuación, se describen los tratamientos especiales inicialmente previstos.

2.6.1. Tratamientos de estabilidad de la bóveda y de frente de excavación

En esta fase del Proyecto todos ellos se incluyen en la sección tipo ST-IV, en principio según las características del terreno a atravesar se proyectan asociados a esta sección tipo, sin embargo, es posible que, en futuras fases, con un estudio más ajustado del trazado, en lo que a cualidades geológicas – geotécnicas se refiere, puedan independizarse de esta sección tipo ST-IV. También en ocasiones puede ser necesario la utilización de uno o varios de estos tratamientos asociado a otra sección tipo de sostenimiento.

Estos tratamientos son:

- Paraguas de micropilotes: se empleará para evitar sobre excavaciones en clave. Consiste en la colocación de elementos lineales paralelos al túnel en toda la bóveda de este.
 - Se emplearán para tubos de acero de diámetro 114 mm y espesor 10 mm. El diámetro de perforación será de 150 mm y se inyectaran lechada de cemento. Cuando la zona a atravesar es muy amplia, se colocan paraguas sucesivos, con un solape mínimo entre uno y otro de 3 metros.
- Gunita sobre-acelerada: se dispondrá en el frente de excavación para evitar la descompresión del terreno y mejorar la estabilidad de la excavación. Este tipo de hormigón proyectado presenta una dosificación de acelerante superior a la empleada para la gunita de sostenimiento, lo que le permite desarrollar altas resistencias iniciales, la reducción en las resistencias finales del hormigón proyectado, que supone el empleo de acelerantes, no resulta problemático en este caso, ya que esta gunita se eliminara con la excavación del siguiente pase.
- Machón central. Es otra medida de estabilización del frente, de esta manera evitamos que la excavación del frente sea completamente vertical, ayudando a la mejora de la estabilidad. El tamaño e inclinación del machón debe de

- compatibilizarse con la excavación, de manera que no repercuta en una disminución del rendimiento.
- Bulones de fibra de vidrio. Se disponen en el frente para mejorar su estabilidad. En lugar de utilizar bulones de acero se colocarán bulones de fibra vidrio, estos últimos poseen unas buenas características de resistencia a tracción con la ventaja de son muy fáciles de excavar. Se disponen de forma horizontal, con una ligera inclinación, y se han diseñado con una longitud y solape igual a la del paraguas de micropilotes. Su puesta en obra es sencilla y consiste en un replanteo inicial, perforación de los taladros, colocación de los bulones e inyección de lechada de cemento.

2.6.2. Tratamientos de impermeabilización

En las zonas donde se atraviesan formaciones con alta presencia de agua, o cruce bajo arroyos, se proyecta un tratamiento de pre-inyección para la impermeabilización del túnel. Aunque no está previsto interceptar ningún acuífero, ante la incertidumbre y ausencia de datos en esta fase de proyecto, se describe el método en caso de que fuese necesario su aplicación.

El propósito de estas inyecciones previas de lechada es la impermeabilización final del túnel y también una mejora de la calidad geotécnica del terreno. Para evitar afecciones en superficie estas inyecciones se ejecutarán desde el frente de excavación y comenzarán antes de llegar la excavación a la zona de influencia del acuífero. De esta manera se podrá reducir la cantidad de agua en el interior del túnel durante la fase de excavación, además de producir una mejora en la estabilidad del frente y en el material del entorno.

La buena ejecución de estas pre-inyecciones es fundamental para la impermeabilización del túnel. Tal y como se ha comprobado en obras de reciente construcción, la efectividad de las post-inyecciones está muy relacionada con estas inyecciones previas, resultando muy complicado la impermeabilización de un túnel únicamente con tratamiento de post-inyecciones tras la excavación.

El método de inyección, descrito de forma sucinta, consiste en una serie de taladros en abanico en todo el perímetro del túnel, en los cuales se procede a realizar una inyección de lechada de cemento a cierta presión.

Las longitudes de estos taladros son variables, pero habitualmente oscilan entre 15-25 m y el espaciamiento entre ellos aproximadamente de 1 o 2 m. Al igual que los paraguas de micropilotes están inclinados respecto a la horizontal un ángulo de $10^{\circ} \pm 5^{\circ}$ y se suelen solapar entre 1/2 y 1/3 de su longitud.

El producto de inyección será lechada de cemento, para la cual se utilizaran cementos tipo I. Al poseer los cementos de este tipo un porcentaje mayor de clinker se puede controlar mejor su fraguado con distintos aditivos, la adicción de acelerantes a la lechada puede conseguir un fraguado más rápido evitando que el agua "lave" la lechada o ésta se vaya por otras vías. Las relaciones agua/cemento (a/c) oscilarán entre 1 – 2 y se podrán ir disminuyendo siempre y cuando no se sobrepase la presión de inyección máxima prevista.

Un parámetro fundamental en la inyección es la presión de inyección, resulta complicado obtener buenos resultados si la presión de inyección no es la correcta. Las presiones habituales en este tipo de inyecciones oscilan entre los 4 -7 bares, sin embargo, éstas se deben de ajustar según los resultados que se van obteniendo durante los trabajos.

Otro aspecto importante en el diseño de las inyecciones es el volumen de admisión. Este parámetro junto con la presión de inyección son parte importante en el control de las inyecciones, con ellos dos se suele fijar el criterio de finalización de la inyección. Es habitual limitar el volumen de inyección a 100 – 150 l de lechada/m de taladro. En el caso de que se supere este valor sin aumentar la presión de inyección debería de revisarse la inyección, ya que es posible que existan fugas de lechada por otras vías distintas de las que se quieren tratar.

Evidentemente un aumento de la presión de inyección por encima de los límites de presión fijados también significará la finalización de la misma.

2.7. Impermeabilización y drenaje

Para proteger el revestimiento de la acción de las aguas subterráneas, y para evitar posibles goteos sobre la plataforma, así como aliviar las presiones intersticiales sobre aquel, se considera conveniente la impermeabilización completa de los túneles.

El sistema que se considera más eficaz está constituido por una lámina porosa de protección, situada en contacto con el sostenimiento, lámina de tipo geotextil, y otra lámina de impermeabilización propiamente dicha colocada a continuación, ésta de tipo sintético (P.V.C. o P.E.). El geotextil se ocupará de filtrar los finos procedentes del lavado del sostenimiento y drenar los caudales para aliviar las presiones intersticiales, así como proteger la lámina frente a las irregularidades del sostenimiento.

Estas láminas se aplican sobre el hormigón proyectado, sujetándolas con anclajes mecánicos y soldando térmicamente las distintas piezas necesarias para recubrir los paramentos del túnel.

La lámina de impermeabilización tendrá continuidad, mediante termo-soldado, hasta alcanzar los tubos dren de PVC ranurado que se colocarán longitudinalmente a lo largo de los túneles, cerca de los paramentos y que conectarán con un canal de pequeñas dimensiones adosado al paramento.

2.8. Revestimiento

Toda obra subterránea debe tener un revestimiento que no ejerza un papel estructural a corto plazo, pero que pueda asegurar la estabilidad de la obra a largo plazo ante una eventual degradación de las características mecánicas del terreno o de los elementos de sostenimiento.

El problema que se plantea es definir qué tipo de exigencias debe tener el revestimiento de un túnel para que sea compatible con las condiciones de utilización y con un costo de ejecución razonable.

A continuación, se señalan algunos de los motivos por los que se considera que su colocación es necesaria:

- El revestimiento aporta un coeficiente de seguridad adicional, colaborando con el sostenimiento a corto plazo. A largo plazo no se puede confiar plenamente en el sostenimiento, pues al estar en contacto directo con las humedades del terreno, éste tiende a alterarse perdiendo alguna de sus características resistentes. La estabilidad a largo plazo se garantiza con el revestimiento.
- El revestimiento de hormigón permite disminuir significativamente las labores de mantenimiento y conservación, crecientes con la edad del túnel, que son normalmente muy costosas y que además entorpecen el tráfico.
- Evita la posible incidencia de convergencias residuales.
- El revestimiento reduce la rugosidad y por tanto mejora la circulación del aire y gases.
- Protege al sostenimiento frente a un posible incendio, el efecto de la agresividad y envejecimiento.

Se procederá al revestimiento del túnel una vez estabilizadas las convergencias e impermeabilizado el túnel.

Antes de proceder al revestimiento del túnel, se comprobará mediante laser escáner las secciones que entren dentro de la sección de revestimiento, procediendo al picado de estas zonas puntuales, y siempre reponiendo el sostenimiento en el caso de que se destruya el que había con anterioridad.

Se propone un espesor de revestimiento de 30 cm de HM-30 reforzado con 2 kg de fibra de polipropileno por cada m³ de hormigón.

2.9. Salidas de emergencia

Tal y como recoge la Especificación Técnica de Interoperabilidad (ETI) relativa a la "Seguridad en los túneles ferroviarios" del sistema ferroviario de la Unión Europea, en su artículo "4.2.1.5.2 Acceso a la zona segura", este apartado se aplica a todos los túneles de más de 1 km de longitud. De esta forma:

- a) Las zonas seguras serán accesibles para las personas que inicien la autoevacuación desde el tren, así como para los servicios de intervención en emergencias.
- b) Se elegirá una de las siguientes soluciones para el acceso desde el tren hasta la zona segura:
 - 1) salidas de emergencia a la superficie laterales y/o verticales. Deberá haber este tipo de salidas, como mínimo, cada 1.000 m;
 - 2) galerías de conexión transversales entre tubos independientes y contiguos del túnel que permitan utilizar el tubo contiguo del túnel como zona segura. Deberán disponerse estas galerías transversales, como mínimo, cada 500 m;
 - 3) se permiten soluciones técnicas alternativas que proporcionen una zona segura con un nivel de seguridad, como mínimo, equivalente. El nivel de seguridad equivalente para pasajeros y personal del tren se verificará mediante el método común de seguridad para la evaluación del riesgo. Se ha definido una galería de evacuación vehicular ya que la longitud del túnel es mayor de 1.000 metros.

Por otro lado, en su artículo 4.2.1.7 Puntos de lucha contra incendios, se recoge lo siguiente:

Esta especificación se aplica a todos los túneles de más de 1 km de longitud.

- a) A los efectos de la presente cláusula, dos o más túneles consecutivos serán considerados como un túnel único, a menos que se cumplan las dos condiciones siguientes:
 - 1) la separación a cielo abierto entre ellos supere en más de 100 m la longitud máxima del tren que vaya a circular en la línea, y

- 2) el área a cielo abierto alrededor de la vía y su situación respecto de esta, en el tramo de separación entre los dos túneles, permiten a los pasajeros alejarse del tren hacia un espacio seguro. El espacio seguro deberá tener un tamaño suficiente para acoger a todos los pasajeros correspondientes al tren de mayor capacidad que se prevea que va a circular por la línea.
- b) Se crearán puntos de lucha contra incendios:
 - 1) fuera de ambas bocas de todos los túneles de menos de 1 km, y
 - 2) dentro del túnel, según la categoría del material rodante previsto para circular, tal y como se resume en el siguiente cuadro:

Longitud del túnel	Categoría del material rodante con arreglo al apartado 4.2.3	Distancia máxima desde las bocas hasta un punto de lucha contra incendios y entre dos de ellos		
1 a 5 km	Categoría A o B	No se requiere ningún punto de lucha contra incendios		
5 a 20 km	Categoría A	5 km		
5 a 20 km	Categoría B	No se requiere ningún punto de lucha contra incendios		
más de 20 km	Categoría A	5 km		
más de 20 km	Categoría B	20 km		

Tabla de distancias de puntos de lucha contra incendio en función de la longitud del túnel

- c) Requisitos para todos los puntos de lucha contra incendios:
 - 1) los puntos de lucha contra incendios estarán equipados con suministro de agua (de al menos 800 l/min durante dos horas) cerca de los puntos previstos para la detención del tren. El método de suministro del agua se describirá en el plan de emergencia;
 - 2) se deberá indicar al maquinista del tren el punto previsto para la detención del tren. Esto no requerirá equipamiento específico a bordo (todos los trenes que cumplan la presente ETI podrán usar el túnel);
 - 3) los puntos de lucha contra incendios serán accesibles a los servicios de intervención en emergencias. En el plan de emergencia se describirá la forma en que los servicios de intervención en emergencias accederán al punto de lucha contra incendios y desplegarán el equipo;

- 4) se podrá interrumpir la alimentación eléctrica de tracción y poner a tierra la instalación eléctrica en los puntos de lucha contra incendios, ya sea de forma presencial o por control remoto.
- d) Requisitos de los puntos de lucha contra incendios situados fuera de las bocas del túnel. Además de los requisitos descritos en la cláusula 4.2.1.7, letra c), los puntos de lucha contra incendios fuera de las bocas del túnel cumplirán las siguientes condiciones:
 - 1) La zona a cielo abierto en torno al punto de lucha contra incendios dispondrá de una superficie de al menos 500 m2.
- e) Requisitos de puntos de lucha contra incendios dentro del túnel. Además de los requisitos descritos en la cláusula 4.2.1.7, letra c), los puntos de lucha contra incendios dentro del túnel cumplirán las siguientes condiciones:
 - 1) se podrá acceder a una zona segura desde el punto de detención del tren. En las dimensiones de la ruta de evacuación hacia la zona segura se deberá considerar el tiempo de evacuación (según lo especificado en la cláusula 4.2.3.4.1) y la capacidad prevista de los trenes (mencionada en la cláusula 4.2.1.5.1) que vayan a circular por el túnel. Se deberá demostrar que el tamaño de la ruta de evacuación resulta adecuado:
 - la zona segura asociada con el punto de lucha contra incendios tendrá una superficie suficiente para que los pasajeros esperen de pie hasta ser evacuados a una zona segura final;
 - existirá un acceso al tren afectado para los servicios de intervención en emergencias sin que tengan que atravesar la zona segura ocupada;
 - 4) el diseño del punto de lucha contra incendios y de su equipamiento deberá tener en cuenta el control de humos para, en particular, proteger a las personas que utilicen las instalaciones de autoevacuación para acceder a la zona segura.

Teniendo en cuenta ambos artículos, se hacen las siguientes consideraciones:

- 1) A efectos de lo recogido en el artículo 4.2.1.7, la distancia entre el falso túnel de 180 m que precede al túnel de La Muela y éste es inferior a 100 m, de forma que no se cumple el punto a.1) del citado artículo. Por tanto, debemos considerar como un único túnel la concatenación de los dos. Esto implica que, a efectos de seguridad (que no de obra civil), tenemos un túnel que empieza en el p.k. 14+880 y acaba en el 17+010, otorgándole una longitud de 2.130 m.
- 2) Según el artículo 4.2.1.5.2 Acceso a la zona segura, en su apartado b.1), deberán existir salidas de emergencia a la superficie laterales y/o verticales como mínimo, cada 1.000 m. De esta forma, puesto que el túnel a efectos de seguridad tiene una longitud de 2.130 m, deberán existir al menos 2 salidas al exterior, siendo la distancia entre ambas, y entre cada una de ellas con el emboquille más cercano, inferior a 1.000m.

Se han proyectado dos pozos con salida al exterior ubicados en los siguientes puntos:

- Pozo 1: p.k. 15+330, de 50 m de altura
- Pozo 2: p.k. 16+300, de 45 m de altura

Se proponen dos métodos constructivos distintos para su ejecución, cuya elección queda supeditada a fases posteriores, donde se habrá obtenido un mayor nivel de detalle en la geología y geotecnia, justo en el punto exacto de ubicación.:

- Anillos de hormigón in situ
- Excavación con rozadora vertical

Anillos de hormigón in situ

Se ejecutarán mediante anillos de hormigón en masa "in situ" contra el terreno mediante un encofrado deslizante.

Se excava el terreno en bataches siguiendo la forma circular o prismática, con un diámetro que será el del encofrado más el espesor del anillo, que está en el

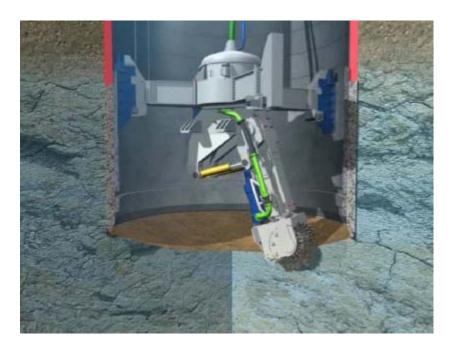
entorno de 0,50 – 0,7 m. La profundidad de la excavación debe ser la misma que la altura del encofrado.

Se coloca el encofrado y, a través de los bebederos, se hormigona el anillo.

Después, transcurrido un tiempo mínimo de fraguado, con el encofrado colocado en el anillo que se acaba de ejecutar, se continúa la excavación del siguiente anillo siguiendo el mismo procedimiento que se ha explicado antes, salvo que las llaves de apoyo contra el terreno deben estar alternadas (al tresbolillo) en planta con respecto a las del anillo anterior, para conseguir que el rozamiento contra el terreno sea el máximo posible.

Una vez realizada la excavación, se baja el encofrado que estaba colocado en el anillo anterior, se hormigona el anillo siguiente sellando la junta mediante una junta water-stop y así sucesivamente.

Cuando ya se hayan ejecutado todos los anillos, se realiza una solera para cerrar el pozo por la parte inferior, que vendrá determinada por las subpresiones a las que está sometida la estructura.


Encofrado colocado en el primer anillo.

Vista general de un pozo tipo, de 34 m. de profundidad y 13 m. de diámetro

Rozadora vertical

Se trata de una máquina provista de un brazo rozador, el cual se mueve y excava radialmente desde el centro del pozo hacia el exterior, que excava al abrigo del revestimiento que se encuentra suspendido, sujeto mediante cables desde la superficie. Una vez finalizado cada avance de excavación, se baja el revestimiento ya montado previamente, para montar después un nuevo anillo de dovelas. Las dovelas de hormigón armado del revestimiento se instalan y atornillan por la parte superior, pudiendo simultanear esta maniobra con la excavación del terreno en el fondo.

Rozadora vertical

Previo a la excavación será necesario realizar un cimiento anular de hormigón armado que repartirá las cargas del proceso de excavación, así como instalar todas las unidades auxiliares necesarias para el anclaje de la maquinaria.

La obtención del macroprecio de pozo vertical se basa en la experiencia del consultor en otros proyectos constructivos, o incluso en precios reales de proyectos ya ejecutados y en explotación.

Los precios para pozos en torno a los 45 – 50 metros de profundidad completamente terminados (sostenimiento incluso excavación, impermeabilización, drenaje, galería de conexión con túnel principal, instalaciones y todo lo necesario para su construcción), oscila entre los 5.500.000€ en el caso de pozos verticales con rozadora (precio real de pozo ejecutado y en explotación en Montcada), y 1.000.000€ para los pozos ejecutados con métodos manuales (precio de proyecto constructivo). Así pues, se ha optado por utilizar un precio medio 3.000.000€.

Por otro lado, se ha ubicado en el emboquille de entrada del falso túnel, y en el de salida del túnel de La Muela una zona de al menos 500 m² a cielo abierto que

servirá como puntos de lucha contra incendio. Esta superficie también se ha replanteado en las salidas de los pozos de evacuación.

Los cuatro puntos mencionados deberán tener un camino de acceso para que los servicios de emergencia puedan atender a los evacuados, sin perjuicio de que también puedan acceder al interior del túnel circulando sobre la vía en placa en la que quedará embebida el carril.

2.10. Auscultación

El presente apartado tiene como objeto servir de base para el desarrollo del futuro Plan de Auscultación que deberá quedar definido en fases posteriores, adaptándolo en detalle a la construcción de la obra.

La auscultación tiene como finalidad controlar los movimientos de las estructuras, así como el comportamiento de los terrenos anejos, durante las distintas fases de construcción.

Para cumplir tales objetivos se instalarán los instrumentos y sistemas de auscultación que, en cada momento, informen de las reacciones con las que el terreno, estructuras e instalaciones, responden a las distintas fases constructivas que se lleven a cabo.

2.10.1. Magnitudes a controlar e instrumentos

En el caso del trazado propuesto, las distintas magnitudes a controlar serían las siguientes:

- Comportamiento estructural del revestimiento del túnel. Para ello se instalarán secciones instrumentadas formadas por células de presión en clave y contrabóveda, y extensómetros de cuerda vibrante. Llevarán asociadas una sección de convergencias formada por 5 puntos de control, uno en clave y dos en cada hastial para el seguimiento de las deformaciones del terreno sobre el túnel.
- Movimientos en el terreno. El control de los movimientos en el terreno en profundidad se realizará mediante la instalación de extensómetros de varillas desde el interior del túnel, sobre todo en las zonas de peor calidad geotécnica, para verificar las condiciones de estabilidad del terreno circundante. También se instalarán inclinómetros en el entorno de los

emboquilles para comprobar si se están produciendo movimientos horizontales que puedan generar subsidencias en el entorno, sobre todo si existen estructuras próximas al túnel. Los movimientos del terreno en superficie se controlarán mediante la instalación de hitos de nivelación que serán controlados mediante topografía de precisión.

• <u>Nivel freático.</u> Las variaciones en el nivel freático, sobre todo cuando se producen depresiones del mismo, originará un cambio de volumen en el suelo, que se suele manifestar en forma de movimientos verticales en la superficie (subsidencias), o presiones elevadas en el sostenimiento. Para controlar las variaciones del nivel freático se instalarán piezómetros.

A continuación, se expone un cuadro resumen con las magnitudes que serán controladas y los instrumentos que se emplearán para ello:

	MAGNITUDES A CONTROLAR	SENSORES
COMPORTAMIENTO ESTRUCTURAL DEL REVESTIMIENTO	Esfuerzos en el revestimiento-sostenimiento.	Células de presión total.
	Deformaciones del revestimiento- sostenimiento.	Extensómetros de cuerda vibrante.
DEL TÚNEL	Empuje del terreno sobre el revestimiento- sostenimiento.	Pernos de convergencia.
MOVIMIENTOS DEL TERRENO	Movimientos en profundidad del terreno.	Extensómetros de varillasInclinómetros
TERRENO	Movimientos en superficie	Verticales: Hitos de nivelación
NIVEL FREÁTICO	Variaciones del nivel freático	Piezómetros

Tabla de magnitudes y sensores de control

2.10.2. Secciones de instrumentación

2.10.2.1. Túnel convencional

Durante la excavación con métodos convencionales, se propone la instalación se secciones de instrumentación en túnel (ST) formadas por los siguientes dispositivos:

- 3 Células de presión en bóveda y 3 en contrabóveda
- 6 Extensómetros de cuerda vibrante doble (trasdós e intradós) junto con las células de presión

 5 Pernos de convergencia combinados (miniprisma+perno), uno en clave y dos en cada hastial.

Cuando las condiciones geotécnicas sean peores, como por ejemplo en zonas de falla, y siempre que se emplee el sostenimiento tipo IV, se hará coincidir al menos una de estas secciones, a la cual podrá añadírsele una sección de extensómetros de varillas.

De esta forma se obtiene una sección de instrumentación en túnel intensificada (STI) que permitirá tener un conocimiento exhaustivo de las condiciones del túnel y del terreno circundante.

A lo largo de la excavación de todo el túnel se dispondrán secciones de convergencias cada 25 metros formadas por 5 puntos de control, uno en clave y dos en cada hastial (SC).

Cuando sea necesario emplear el sostenimiento tipo IV, las secciones de convergencias de dispondrán cada 10 metros durante todo el tramo afectado por dicho sostenimiento.

La ubicación exacta de las secciones de convergencias y secciones intensificadas se realizará según el avance de obra y en función de la calidad de los materiales encontrados durante la excavación.

Se podrán instalar piezómetros en el interior del túnel si las condiciones lo requieren.

En los emboquilles, se controlarán los movimientos verticales y horizontales mediante la instalación de hitos de nivelación e inclinómetros, cuya localización quedará detallada en fases posteriores donde el nivel de detalle permita definir la ubicación exacta de los mismos.

2.10.3. Definición de umbrales y frecuencias

Atendiendo al criterio de movimientos admisibles, se clasifican los niveles de riesgo de cara a establecer la frecuencia de lecturas de los instrumentos y para considerar las posibles medidas de actuación. Tanto los umbrales como las

frecuencias quedarán definidos en fases posteriores a este estudio informativo, siendo de carácter orientativo la clasificación que se muestra a continuación:

NIVEL DE RIESGO	TÚNEL/ESTRUCTURAS EN EDIFICIOS/INFRAESTRUCTURAS EXISTENTES		MOVIMIENTO DEL TERRENO(SECCIONES INSTRUMENTADAS)		
VERDE	La excavación está estabilizada	Los movimientos inducidos en edificaciones y servicios no superan el umbral menos restrictivo.	El terreno se comporta según los previsto y los movimientos medidos son aceptables		
ÁMBAR	La excavación no se comporta según lo previsto, pero tiende a la estabilización	Los movimientos inducidos a cota de cimentación que superan el límite establecido, sin alcanzar, en su punto pésimo, los niveles de deformación equivalentes al umbral "rojo".	Los movimientos medidos sobrepasan los valores aceptables, pero tienden a estabilizarse		
ROJO	La situación supera los límites considerados como aceptables y la excavación no está estabilizada	Los movimientos inducidos a cota de cimentación superan los establecidos para el umbral "rojo".	Los movimientos medidos sobrepasan los valores aceptables, y no se estabilizan		

Definición de niveles de riesgo y alarmas

2.10.4. Medidas de actuación

Una vez establecidos los umbrales de control y la frecuencia de lecturas, se deberán prever medidas de actuación en cada caso. A continuación se proponen unos criterios generales, que serán válidos para todos los métodos constructivos y deberán concretarse con la correspondiente aprobación de la Dirección de Obra.

UMBRAL DE CONTROL	MEDIDAS DE ACTUACIÓN					
VERDE	Seguir con el control de movimientos establecido por el Plan de Auscultación de la Obra.					
	Incrementar la frecuencia de lecturas evaluando la situación a partir de la velocidad de variación del parámetro registrado.					
AMBAR	Efectuar una inspección visual somera.					
	Continuar con el proceso de ejecución de las obras según lo previsto.					
	Establecer un análisis específico de la situación, instalando instrumentación complementaria si fuera preciso.					
ROJO	Revisión del proceso constructivo para introducir modificaciones en el mismo, si es posible.					
	Valorar la necesidad de introducir medidas correctoras, refuerzo o protección de las estructuras o elementos afectados.					

Medidas de actuación según los umbrales de control

2.10.5. Tratamiento de la información y elaboración de informes

Los resultados de la auscultación serán incorporados diariamente y a medida que se vayan generando, a las bases de datos u hojas de cálculo correspondientes para su procesado inmediato y almacenamiento, de manera que en cualquier momento puedan ser consultados.

Una vez analizada dicha información, se emitirá un informe con la periodicidad definida en el Plan de Auscultación que recogerá toda la información actualizada hasta la fecha de emisión del informe y con los datos a origen.

Esta información se emitirá en forma de tablas y gráficas, y deberá ir acompañada de una valoración de los resultados en relación a los umbrales de control. Además, y junto a los resultados, deberán adjuntarse unos planos donde se defina la situación de la instrumentación, y esquemas relativos al avance de las obras.

2.11. Seguridad en túneles

Las normas aplicadas en España en relación con la seguridad en los túneles ferroviarios son:

- La Especificación Técnica de Interoperabilidad relativa a «la seguridad en los túneles ferroviarios» del sistema ferroviario transeuropeo convencional y de alta velocidad.
- Borrador de la Instrucción para el proyecto y construcción del subsistema de Infraestructura Ferroviaria (IFI-2011)

El enfoque de la normativa en vigor, incluyendo la ETI «Seguridad en los túneles ferroviarios» se refiere ante todo a la protección de las vidas humanas. Establece una serie de medidas que permiten evacuar a los pasajeros en condiciones de seguridad adecuadas en caso de incidente, así como el acceso a los servicios de emergencia.

La resistencia al hundimiento de la infraestructura está por lo tanto dimensionada tanto para asegurar la evacuación de los pasajeros y del personal como también el acceso a los servicios de emergencia.

A continuación, se indica cada una de las características necesarias a tener por cada uno de los aspectos relacionados anteriormente. Se señala el artículo de la mencionada **ETI de Seguridad en Túneles** que hace referencia a cada aspecto:

Art. 4.2.1.1. Prevención del acceso no autorizado a las salidas de emergencia y a las salas técnicas: Esta especificación se aplicará a todos los túneles.

- a) Se debe impedir el acceso no autorizado a las salas técnicas.
- b) Cuando se bloqueen las salidas de emergencia por motivos de seguridad, debe garantizarse que siempre se puedan abrir desde dentro.

Art. 4.2.1.2. Resistencia al fuego de las estructuras del túnel: Esta especificación se aplicará a todos los túneles:

- a) Esta especificación se aplica a los productos y materiales de construcción del interior de los túneles.
- b) El material de construcción del túnel cumplirá los requisitos de la clase A2 de la Decisión 2000/147/CE de la Comisión. Los paneles no estructurales

- y demás equipamiento cumplirán los requisitos de la clase B de la Decisión 2000/147/CE de la Comisión.
- c) Se enumerarán los materiales que no contribuyan significativamente a una carga de fuego. Dichos materiales no están obligados a cumplir con lo anteriormente mencionado.
- <u>Art. 4.2.1.3.</u> Reacción al fuego de los materiales de construcción: Esta especificación se aplica a todos los túneles:
 - a) Esta especificación se aplica a los productos y materiales de construcción del interior de los túneles.
 - b) El material de construcción del túnel cumplirá los requisitos de la clase A2 de la Decisión 2000/147/CE de la Comisión. Los paneles no estructurales y demás equipamiento cumplirán los requisitos de la clase B de la Decisión 2000/147/CE de la Comisión.
 - c) Se enumerarán los materiales que no contribuyan significativamente a una carga de fuego. Dichos materiales no están obligados a cumplir con lo anteriormente mencionado.
- Art. 4.2.1.4. Detección de incendios en las salas técnicas: Esta especificación se aplicará a túneles de más de 1 km de longitud. Las salas técnicas estarán equipadas con detectores que alerten al administrador de la infraestructura en caso de incendio.
- <u>Art. 4.2.1.5.1. Zona Segura:</u> Esta especificación se aplica a todos los túneles de más de 1 km de longitud.
 - a) Una zona segura permitirá la evacuación de los trenes que utilicen el túnel. Tendrá una capacidad acorde con la capacidad máxima de los trenes que se prevea que circulen en la línea donde se localiza el túnel.
 - b) La zona segura garantizará condiciones de supervivencia para pasajeros y personal del tren durante el tiempo necesario para realizar una evacuación completa desde la zona segura hasta el lugar seguro final.

- c) En caso de zonas seguras subterráneas o submarinas, las instalaciones permitirán que las personas se desplacen desde la zona segura hasta la superficie sin tener que volver a entrar en el tubo afectado del túnel.
- d) El diseño de una zona segura y su equipamiento deberá tener en cuenta el control de humos para, en particular, proteger a las personas que utilicen las instalaciones de auto-evacuación.

<u>Art. 4.2.1.5.2 Acceso a la zona segura</u>: Esta especificación se aplica a todos los túneles de más de 1 km de longitud.

- c) Las zonas seguras serán accesibles para las personas que inicien la autoevacuación desde el tren, así como para los servicios de intervención en emergencias.
- d) Se elegirá una de las siguientes soluciones para el acceso desde el tren hasta la zona segura:
 - 4) salidas de emergencia a la superficie laterales y/o verticales. Deberá haber este tipo de salidas, como mínimo, cada 1.000 m;
 - 5) galerías de conexión transversales entre tubos independientes y contiguos del túnel que permitan utilizar el tubo contiguo del túnel como zona segura. Deberán disponerse estas galerías transversales, como mínimo, cada 500 m;
 - 6) se permiten soluciones técnicas alternativas que proporcionen una zona segura con un nivel de seguridad, como mínimo, equivalente. El nivel de seguridad equivalente para pasajeros y personal del tren se verificará mediante el método común de seguridad para la evaluación del riesgo.
- e) Las puertas de acceso desde el pasillo de evacuación a la zona segura tendrán una abertura libre de al menos 1,4 m de ancho por 2 m de alto. De manera alternativa, se permite utilizar múltiples puertas contiguas de menor anchura siempre que se verifique que la capacidad total de paso de personas es equivalente o superior.
- f) Una vez atravesadas las puertas, la abertura libre deberá seguir siendo de al menos 1,5 m de ancho por 2,25 m de alto.

- g) Se describirá en el plan de emergencia el modo en que los servicios de intervención en emergencias accederán a la zona segura.
- Art. 4.2.1.5.3. Medios de comunicación en zonas seguras: Esta especificación se aplica a todos los túneles de más de 1 km de longitud. La comunicación será posible, bien por teléfono móvil, bien mediante conexión fija, entre las zonas seguras subterráneas y el centro de control del administrador de la infraestructura.
- Art. 4.2.1.5.4. Alumbrado de emergencia en las rutas de evacuación: Esta especificación se aplica a todos los túneles de más de 0,5 km de longitud.
- a) Se instalará alumbrado de emergencia para guiar a los pasajeros y al personal del tren hacia una zona segura en caso de emergencia.
- b) La iluminación deberá cumplir los siguientes requisitos:
 - 1) en tubo de vía única: en el lado del pasillo de evacuación;
 - 2) en tubo de vías múltiples: en ambos lados del tubo;
 - 3) posición de las luces:
 - por encima del pasillo de evacuación, lo más bajo posible, y de forma que no interrumpan el espacio libre para el paso de personas, o bien
 - integradas en los pasamanos;
 - 1. la iluminancia deberá mantenerse en el tiempo en al menos 1 lux en cualquier punto del plano horizontal a nivel del pasillo.
- c) Autonomía y fiabilidad: deberá disponerse de un suministro eléctrico alternativo durante un período de tiempo apropiado tras la interrupción del suministro eléctrico principal. El tiempo requerido deberá adecuarse a los escenarios de evacuación y estar definido en el plan de emergencia.
- d) Si las luces de emergencia se desconectan en condiciones normales de funcionamiento, será posible encenderlas por los dos medios siguientes:
 - 1) manualmente desde el interior del túnel a intervalos de 250 m;
 - 2) por el explotador del túnel mediante control remoto.

<u>Art.4.2.1.5.5.</u> Señalización de evacuación: Esta especificación se aplica a todos los túneles.

- a) La señalización de la evacuación indicará las salidas de emergencia, la distancia a la zona segura y la dirección hacia esta.
- b) Todas las señales se ajustarán a las disposiciones de la Directiva 92/58/CEE, de 24 de junio de 1992, relativa a las disposiciones en materia de señalización de seguridad y de salud en el trabajo y a lo especificado en el apéndice A, índice no 1.
- c) Las señales de evacuación se instalarán en los hastiales a lo largo de los pasillos de evacuación.
- d) La distancia máxima entre las señales de evacuación será 50 m.
- e) Se instalarán señales en el túnel para indicar la posición del equipamiento de emergencia, en los lugares donde esté situado dicho equipamiento.
- f) Todas las puertas que conduzcan a salidas de emergencia o galerías de conexión transversal estarán señalizadas.

<u>Art. 4.2.1.6. Pasillos de evacuación:</u> Esta especificación se aplica a todos los túneles de más de 0,5 km de longitud.

- a) Se construirán pasillos de evacuación en los túneles de vía única, como mínimo, a un lado de la vía, y en los túneles de vías múltiples, a ambos lados del túnel. En los túneles con más de dos vías, será posible el acceso a un pasillo de evacuación desde cada vía.
 - 1) La anchura del pasillo de evacuación será de al menos 0,8 m.
 - La altura libre mínima por encima del pasillo de evacuación será de 2,25 m.
 - 3) La altura del pasillo estará al nivel de la parte superior del carril o incluso más alto.
 - 4) Se evitarán estrechamientos locales provocados por obstáculos dentro del gálibo de evacuación. La presencia de obstáculos no reducirá la anchura mínima a menos de 0,7 m y la longitud del obstáculo no superará los 2 m.

- b) Se instalarán pasamanos continuos entre 0,8 m y 1,1 m por encima del pasillo que marquen el rumbo hacia una zona segura.
 - Los pasamanos se colocarán fuera del gálibo libre mínimo del pasillo de evacuación.
 - 2) Los pasamanos formarán un ángulo entre 30° y 40° respecto al eje longitudinal del túnel a la entrada y a la salida del obstáculo.
- Art. 4.2.1.7. Puntos de lucha contra incendios: Esta especificación se aplica a todos los túneles de más de 1 km de longitud.
 - f) A los efectos de la presente cláusula, dos o más túneles consecutivos serán considerados como un túnel único, a menos que se cumplan las dos condiciones siguientes:
 - la separación a cielo abierto entre ellos supere en más de 100 m la longitud máxima del tren que vaya a circular en la línea, y
 - 2) el área a cielo abierto alrededor de la vía y su situación respecto de esta, en el tramo de separación entre los dos túneles, permiten a los pasajeros alejarse del tren hacia un espacio seguro. El espacio seguro deberá tener un tamaño suficiente para acoger a todos los pasajeros correspondientes al tren de mayor capacidad que se prevea que va a circular por la línea.
 - g) Se crearán puntos de lucha contra incendios:
 - 1) fuera de ambas bocas de todos los túneles de menos de 1 km, y
 - 2) dentro del túnel, según la categoría del material rodante previsto para circular, tal y como se resume en el siguiente cuadro:

Longitud del túnel	Categoría del material rodante con arreglo al apartado 4.2.3	Distancia máxima desde las bocas hasta un punto de lucha contra incendios y entre dos de ellos			
1 a 5 km	Categoría A o B	No se requiere ningún punto de lucha contra incendios			
5 a 20 km	Categoría A	5 km			
5 a 20 km	Categoría B	No se requiere ningún punto de lucha contra incendios			
más de 20 km	Categoría A	5 km			
más de 20 km	Categoría B	20 km			

Tabla de distancias de puntos de lucha contra incendio en función de la longitud del túnel

- h) Requisitos para todos los puntos de lucha contra incendios:
 - los puntos de lucha contra incendios estarán equipados con suministro de agua (de al menos 800 l/min durante dos horas) cerca de los puntos previstos para la detención del tren. El método de suministro del agua se describirá en el plan de emergencia;
 - se deberá indicar al maquinista del tren el punto previsto para la detención del tren. Esto no requerirá equipamiento específico a bordo (todos los trenes que cumplan la presente ETI podrán usar el túnel);
 - los puntos de lucha contra incendios serán accesibles a los servicios de intervención en emergencias. En el plan de emergencia se describirá la forma en que los servicios de intervención en emergencias accederán al punto de lucha contra incendios y desplegarán el equipo;
 - 4) se podrá interrumpir la alimentación eléctrica de tracción y poner a tierra la instalación eléctrica en los puntos de lucha contra incendios, ya sea de forma presencial o por control remoto.
- i) Requisitos de los puntos de lucha contra incendios situados fuera de las bocas del túnel. Además de los requisitos descritos en la cláusula 4.2.1.7, letra c), los puntos de lucha contra incendios fuera de las bocas del túnel cumplirán las siguientes condiciones:

- 1) La zona a cielo abierto en torno al punto de lucha contra incendios dispondrá de una superficie de al menos 500 m2.
- j) Requisitos de puntos de lucha contra incendios dentro del túnel. Además de los requisitos descritos en la cláusula 4.2.1.7, letra c), los puntos de lucha contra incendios dentro del túnel cumplirán las siguientes condiciones:
 - 1) se podrá acceder a una zona segura desde el punto de detención del tren. En las dimensiones de la ruta de evacuación hacia la zona segura se deberá considerar el tiempo de evacuación (según lo especificado en la cláusula 4.2.3.4.1) y la capacidad prevista de los trenes (mencionada en la cláusula 4.2.1.5.1) que vayan a circular por el túnel. Se deberá demostrar que el tamaño de la ruta de evacuación resulta adecuado;
 - la zona segura asociada con el punto de lucha contra incendios tendrá una superficie suficiente para que los pasajeros esperen de pie hasta ser evacuados a una zona segura final;
 - existirá un acceso al tren afectado para los servicios de intervención en emergencias sin que tengan que atravesar la zona segura ocupada;
 - 4) el diseño del punto de lucha contra incendios y de su equipamiento deberá tener en cuenta el control de humos para, en particular, proteger a las personas que utilicen las instalaciones de autoevacuación para acceder a la zona segura.

<u>Art. 4.2.1.8. Comunicaciones de emergencia</u>: Esta especificación se aplica a todos los túneles de más de 1 km de longitud.

a) Deberá haber comunicación por radio entre el tren y el centro de control del administrador de la infraestructura en cada túnel, mediante GSM-R.

Asimismo, tendrá que haber continuidad por radio para que los servicios de intervención en emergencias se comuniquen in situ con sus centros de mando. El sistema permitirá que los servicios de intervención en emergencias puedan usar su propio equipo de comunicación.

2.12. Valoración económica

La valoración económica se ha realizado en función de las características geológico-geotécnicas del terreno. Según el perfil geológico realizado con los datos disponibles, el terreno a excavar es bastante monótono en cuanto a litología y estructuras tectónicas. Se ha realizado una estimación del porcentaje de los sostenimientos que se podrían aplicar. En fases posteriores, y con una adecuada campaña geotécnica, se podrá definir con mayor detalle la tramificación del terreno, y por tanto ajustar con mayor exactitud los sostenimientos a emplear.

A continuación, se incluyen una tabla resumen con los macroprecios por cada tipo de sostenimiento para un túnel revestido e impermeabilizado (plataforma de vía no incluida), los emboquilles y los pozos de salida al exterior. El coste total para su ejecución asciende a 43.076.654,00 €.

	Alternativa	Túnel	Pk. Inicio	Pk. Fin	Longitud total (m)	Sección (m²)	Formación	Pk. Inicio	Pk. Fin	Long. (m)	Tipo sostenimiento	de	Longitud estimada de aplicación	precio m/l	Coste Parcial
Ī				17+010 1850 120 Mm 15+160 17+010							ST-I	10	185	11.607,92 €	2.147.465,98 €
	21 v 2 2	La Muela	15+160		1850	ST-II	40	740	15.873,77 €	11.746.587,02€					
	2.1 y 2.2	La Midela 134100 174010 1830 120 Milli 134100 174010 1830 1	ST-IIII	40	740	21.081,86 €	15.600.577,97 €								
											ST-IV	10	185	39.864,99 €	7.375.023,04 €

Frontal							
nº	Precio Tratamiento Coste parcial		ial nº Precio Coste parcial		Coste parcial	Coste parcial	
2	103.500,00 €	207.000,00 €	2	3.000.000,00€	6.000.000,00€	6.207.000,00 €	

Alternativa	Túnel	Excavación + Sotenimiento	Túnel principal	Pozos de salida al exterior	Coste total
2.1 y 2.2	La Muela	36.869.654,00 €	207.000,00€	6.000.000,00 €	43.076.654, 00 €