

ANEJO Nº 4. EFECTOS SÍSMICOS

ÍNDICE

4. ANEJO № 4. EFECTOS SÍSMICOS	3
4.1. GENERALIDADES	3
4.2. CRITERIOS DE APLICACIÓN DE LA NORMA	3
4.3. ACCIONES SÍSMICAS	3
4.3.1. CLASIFICACIÓN DE LOS PUENTES	
4.3.2. ACELERACIÓN SÍSMICA BÁSICA	3
4.4. ACELERACIÓN SÍSMICA DE CÁLCULO	4

4. ANEJO Nº 4. EFECTOS SÍSMICOS

4.1. GENERALIDADES

Se aplica la "Norma de Construcción Sismorresistente: puentes (NCSP-07)", aprobada en el Real Decreto 637/2007 de 18 de mayo. Esta norma tiene como objeto proporcionar los criterios que han de seguirse dentro del territorio español para la consideración de la acción sísmica en la realización de los diferentes proyectos

4.2. CRITERIOS DE APLICACIÓN DE LA NORMA

Según el apartado 2.8 de la Norma NCSP-07, no será necesaria la consideración de las acciones sísmicas en las situaciones siguientes:

- Cuando la aceleración sísmica horizontal básica ab del emplazamiento sea inferior a 0,04 g;
 siendo g la aceleración de la gravedad.
- Cuando la aceleración sísmica horizontal de cálculo a_c sea inferior a 0,04 g.

La Norma NCSP-07 considera que una aceleración sísmica básica inferior a 0,04 g no genera solicitaciones peores que las demás hipótesis de carga, dada la diferencia de coeficientes de seguridad y de acciones simultáneas que deben considerarse con el sismo.

4.3. ACCIONES SÍSMICAS

4.3.1. CLASIFICACIÓN DE LOS PUENTES

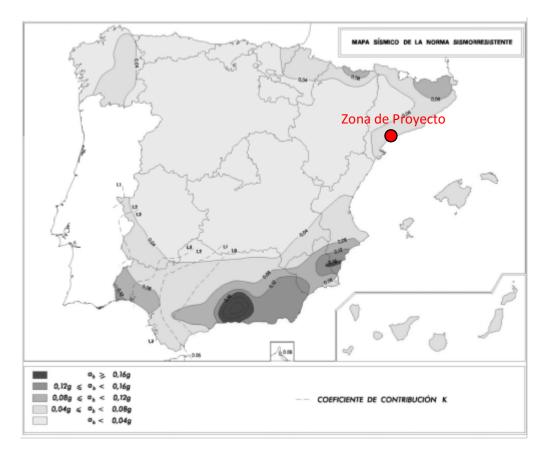
Según el artículo 2.3 de la Norma NCSP-07, los puentes se clasificarán por su importancia en función de los daños que pueda ocasionar su destrucción, adoptando para ello la clasificación recogida en la "Instrucción sobre las acciones a considerar en el proyecto de puentes de carretera (IAP-11)".

En este proyecto, las estructuras se clasificarán dentro de las siguientes categorías:

- Importancia especial: Puentes situados en las calzadas principales de la red de alta capacidad (autovías y autopistas) y en las carreteras convencionales y vías de servicio cuya IMD sea superior a 7.000 vehículos/día. Dentro de las estructuras incluidas en este Proyecto se consideran que las estructuras E-1A, E-1B, E-4, E-5, E-7 y E-8 son de importancia especial.
- Importancia normal: las estructuras restantes y los muros se consideran de importancia normal ya que no concurren ninguna de las condiciones prescritas en el apartado 5.2 de la

Instrucción IAP-11 para su clasificación de importancia especial. En particular, ninguno de los ramales cuenta con una IMD superior a 7.000 vehículos/día.

4.3.2. ACELERACIÓN SÍSMICA BÁSICA


El valor de la aceleración sísmica básica, expresada en relación al valor de la gravedad g, se fija para cada zona del territorio español por medio del mapa de peligrosidad sísmica que se incluye en el apartado 3.4 de la Norma NCSP-07 y cuyo listado por términos municipales para valores iguales o superiores a 0,04 g se recoge en el Anejo 1 de la citada norma. Este valor es característico de la aceleración horizontal de la superficie del terreno, correspondiente a un período de retorno de 500 años.

Tanto el citado mapa como el listado de términos municipales incluyen además el coeficiente K de contribución, que tiene en cuenta la influencia de los distintos tipos de terremotos esperados en la peligrosidad sísmica de cada punto.

En este caso, para los términos municipales de Tarragona, La Riera de Gaia, Altafulla y Torredembarra, en que se sitúan las estructuras, resulta:

$$a_h / g = 0.04$$
 $K = 3$

Se incluye a continuación el mapa de peligrosidad sísmica recogido en la NCSP-07.

De acuerdo con los criterios de aplicación de la "Norma de Construcción Sismorresistente: puentes (NCSP-07)", al no ser la aceleración sísmica horizontal básica inferior al valor 0,04 g, es preceptiva su aplicación para este proyecto.

4.4. ACELERACIÓN SÍSMICA DE CÁLCULO

La aceleración sísmica horizontal de cálculo, a_c, se define como el producto:

$$a_c = S \cdot \rho \cdot a_b$$

donde:

- Aceleración sísmica básica, definida en el apartado 3.2 de este anejo.
- Coeficiente adimensional de riesgo, función de la probabilidad aceptable de que se exceda a_c en el periodo de vida para el que se proyecta la construcción. Se obtiene como producto de dos factores:

$$\rho = \gamma_I \cdot \gamma_{II}$$

- Factor de importancia, función de la importancia del puente, cuyo valor se recoge en el apartado 2.3. de la Norma NCSE-07:
- Factor modificador para considerar un periodo de retorno diferente de 500 años. El producto ρ·a_b representa la aceleración sísmica horizontal correspondiente a un periodo de retorno P_R. A falta de un estudio probabilista de la peligrosidad sísmica en el emplazamiento del puente para deducir el valor de esa aceleración, de forma aproximada puede suponerse:

$$\gamma_{II} = \left(P_R / 500\right)^{0.4}$$

En este caso, se adopta un periodo de retorno de 500 años, por lo que el factor γ_{II} adopta un valor igual a 1,00.

Coeficiente de amplificación del terreno. Toma el valor

Para
$$\rho \cdot a_b \le 0,1 \cdot g$$

$$S = \frac{C}{1.25}$$

Para
$$0.1 \cdot g < \rho \cdot a_b < 0.4 \cdot$$

Para
$$0,1 \cdot g < \rho \cdot a_b < 0,4 \cdot g$$

$$S = \frac{C}{1,25} + 3,33 \cdot \left(\rho \cdot \frac{a_b}{g} - 0,1\right) \cdot \left(1 - \frac{C}{1,25}\right)$$

Para
$$0.4 \cdot g \leq \rho \cdot a_b$$

$$S = 1,0$$

- Coeficiente de terreno, definido en el apartado 3.2 de la Norma NCSP-07 en función de las características del terreno:
 - Terreno tipo I: Roca compacta, suelo cementado o granular muy denso. Velocidad de propagación de las ondas elásticas transversales o de cizalla, v_s > 750 m/s.
 - Terreno tipo II: Roca muy fracturada, suelos granulares densos o cohesivos duros. Velocidad de propagación de las ondas elásticas transversales o de cizalla, 750 m/s \geq v_s > 400 m/s.
 - Terreno tipo III: Suelo granular de compacidad media, o suelo cohesivo de consistencia firme a muy firme. Velocidad de propagación de las ondas elásticas transversales o de cizalla, 400 m/s \geq v_s > 200 m/s.
 - Terreno tipo IV: Suelo granular suelto, o suelo cohesivo blando. Velocidad de propagación de las ondas elásticas transversales o de cizalla, v_s ≤200 m/s.

A cada uno de estos tipos de terreno se le asigna el valor del coeficiente C indicado en la tabla adjunta:

Tipo de terreno	Coeficiente C
I	1,0
II	1,3
III	1,6
IV	2,0

El coeficiente C correspondiente a un emplazamiento concreto dependerá de las características de los primeros 30 metros bajo la superficie. Para obtener su valor, se determinarán los espesores e₁, e₂, e₃ y e₄ de los tipos de terreno I, II, III y IV, respectivamente, existentes en esos primeros 30 metros. Se adoptará como valor de C el valor medio obtenido al ponderar los coeficientes C_i de cada estrato con su espesor ei, en metros, mediante la expresión:

$$C = \frac{\sum C_i \cdot e_i}{30}$$

El coeficiente C no contempla el posible colapso del terreno bajo la estructura durante el terremoto debido a la inestabilidad del terreno como en el caso de arcillas sensibles, densificación

de suelos, hundimiento de cavidades subterráneas, movimientos de ladera, etc. Especialmente habrá de analizarse la posibilidad de licuación (o licuefacción) de los suelos susceptibles a la misma.

Con la información geotécnica preliminar incluida en el Anejo nº12 Geotecnia de Cimentación de Estructuras se consideran los espesores de terreno indicados en la tabla siguiente, que permiten evaluar los coeficientes de terreno C para cada una de la estructuras del Proyecto.

	ESTRUCTURA	Terreno IV (m)	Terreno III (m)	Terreno II (m)	Terreno I (m)	Coeficiente C
		(111)			(111)	
E-1A	P.S. 100+604	-	15,0	15,0	-	1,45
E-1B	P.S. 100+684	-	15,0	15,0	-	1,45
E-2	P.I. 101+265	1,2	9,0	19,8	-	1,42
E-3	P.I. 102+124	-	9,5	20,5	ı	1,40
E-4	P.I. 102+483	-	10,0	20,0	-	1,40
E-5	PUENTE SOBRE EL RÍO GAIA	-	24,7	5,3	ı	1,55
E-6	P.I. 103+231	-	17,0	13,0	ı	1,47
E-7	P.S. 104+366	-	15,0	15,0	-	1,45
E-8	P.S. 105+168	-	15,0	15,0	-	1,45
E-9	P.S. 0+890 EJE 63	-	20,0	10,0	=	1,50
E-10	P.S. 1+006 EJE 63	-	20,0	10,0	=	1,50

	MURO	Terreno IV (m)	Terreno III (m)	Terreno II (m)	Terreno I (m)	Coeficiente C
M-1	100+180 - 100+214 (Eje 1 M.D.)		15.0	15.0		1.45
IVI-1	0+000 - 0+190 (Eje 20 M.D.)	-	15,0	15,0	-	1,45
M-2	100+490 – 100+602 (Eje 1 M.I)		15.0	15.0		1.45
IVI-Z	100+614 – 100+630 (Eje 1 M.I.)	-	15,0	15,0	-	1,45
N4 2	100+660 – 100+676 (Eje 1 M.I)		15.0	15.0		1 45
M-3	100+688 – 100+950 (Eje 1 M.I.)	-	15,0	15,0	-	1,45
M-4	100+691 - 100+877 (Eje 1 M.D.)	-	15,0	15,0	-	1,45
M-5	0+040 - 0+100 (Eje 41 M.D.)	-	17,0	13,0	-	1,47
M-6	102+040 - 102+119 (Eje 1 M.I.)	-	17,0	13,0	-	1,47
M-7	102+399 – 102+426 (Eje 1 M.D.)	-	10,0	20,0	-	1,40
M-8	0+086 – 0+197 (Eje 42 M.I.)	-	10,0	20,0	-	1,40
M-9	0+545 – 0+594 (Eje 63 M.I.)	-	15,0	15,0	-	1,45
M-10	0+230 – 0+304 (Eje 61 M.I.)	-	15,0	15,0	-	1,45
M-11	105+230 – 105+375 (Eje 1 M.I.)	-	15,0	15,0	-	1,45

Considerando la clasificación de cada una de las estructuras, se obtiene la aceleración de cálculo aplicable en cada una de ellas:

• Estructuras de importancia especial:

$$\rho \cdot a_b = 1,3 \cdot 0,04 \cdot g = 0,052 \cdot g \le 0,1 \cdot g$$
 $S = \frac{C}{1,25}$

$$a_c = S \cdot \rho \cdot a_b = \frac{C}{1,25} \cdot 0,052 \cdot g$$

Por tanto:

	Estructura	a _c /g
E-1A	P.I. 102+483	0,060
E-1B	PUENTE SOBRE EL RÍO GAIA	0,060
E-4	P.I. 102+483	0,058
E-5	PUENTE SOBRE EL RÍO GAIA	0,064
E-7	P.S. 104+366	0,060
E-8	P.S. 105+168	0,060

• Estructuras de importancia normal:

$$\rho \cdot a_b = 1,0 \cdot 0,04 \cdot g = 0,04 \cdot g \le 0,1 \cdot g$$

$$S = \frac{C}{1,25}$$

$$a_c = S \cdot \rho \cdot a_b = \frac{C}{1,25} \cdot 0,04 \cdot g$$

Por tanto:

	Estructura / Muro	a _c /g
E-2	P.I. 101+265	0,045
E-3	P.I. 102+124	0,045
E-6	P.I. 103+231	0,047
E-9	P.S. 0+890 EJE 63	0,048
E-10	P.S. 1+006 EJE 63	0,048
N4 4	100+180 - 100+214 (Eje 1 M.D.)	0.046
M-1	0+000 - 0+190 (Eje 20 M.D.)	0,046
N4 2	100+490 – 100+602 (Eje 1 M.I)	0.046
M-2	100+614 – 100+630 (Eje 1 M.I.)	0,046
N4 2	100+660 – 100+676 (Eje 1 M.I)	0.046
M-3	100+688 – 100+950 (Eje 1 M.I.)	0,046
M-4	100+691 - 100+877 (Eje 1 M.D.)	0,046
M-5	0+040 - 0+100 (Eje 41 M.D.)	0,047
M-6	102+040 - 102+119 (Eje 1 M.I.)	0,047
M-7	102+399 – 102+426 (Eje 1 M.D.)	0,045
M-8	0+086 – 0+197 (Eje 42 M.I.)	0,045
M-9	0+545 – 0+594 (Eje 63 M.I.)	0,046
M-10	0+230 – 0+304 (Eje 61 M.I.)	0,046
M-11	105+230 – 105+375 (Eje 1 M.I.)	0,046